• Title/Summary/Keyword: 점화기

Search Result 435, Processing Time 0.026 seconds

Fabrication Method and Performance Evaluation of Micro Igniter for MEMS Thruster (MEMS 추력기를 위한 마이크로 점화기의 제작 방법 및 성능 평가)

  • Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Micro igniter on the glass membrane for MEMS thruster was developed. The stability of the micro igniter by using a glass membrane with a thickness of tens of microns was improved. The micro igniter was fabricated by anisotropic wet etching of photosensitive glass and deposition of Pt/Ti for electric heat coil. The solid propellant was loaded into the propellant chamber without an especial technique due to the high structural stability of the glass membrane. Ignition tests were performed successfully. The minimum ignition delay was 27.5 ms with an ignition energy of 19.3 mJ.

A Study on Dynamic Behavior for After-end Igniter Mount (후방형 점화기 마운트 동적 거동 연구)

  • Kwon, Tae-Hoon;Choi, Young-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.227-230
    • /
    • 2008
  • Igniter system of Solid Rocket Motor is classfied as Forward-end type and After-end type. Forward-end type is used for sustentation of combustion pressure by nozzle plug. But After-end type is used for sustentation of combustion pressure by igniter mount. Igniter Mount is assembled on nozzle throat. Igniter mount holds combustion pressure and igniter release energy. A study has qualificated result of Dynamic behavior for After-end igniter mount of Static Firing Test and Finite element method.

  • PDF

The modeling method of ignitors for HID lamps (HID 램프용 점화기의 모델링 기법)

  • Park, Chong-Yeun;Lim, Byoung-Noh;Jang, Mok-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1104-1105
    • /
    • 2007
  • 본 논문은 고압방전램프용 안정기의 점화기 4종류를 ESR(Equivalent Series Resistance)를 고려하여 등가모델링 하였다. 전자식 안정기의 구동식에 따른 풀 브리지 방식의 점화기 2종류와 하프 브리지 방식의 1종류 마지막으로 자기식 안정기의 점화기를 모델링하고 타당성을 증명하기 위해 실험을 통하여 입증하였다.

  • PDF

Ignition Characteristics Analysis According to the Cable length Between the Ignition and Lamp (HID 램프용 점화기와 램프간 거리에 따른 점등 특성 분석)

  • Park, Chong-Yeun;Kim, Ki-Nam
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.24-30
    • /
    • 2009
  • We compared 3 kinds of ignitor characteristics and represented the procedure in order to turn the HID lamp on. Also, we analysed the cable characteristic based on the length between ignitor and the HID lamp and proved it theoretically. In practice, the ignition voltage contains a lot of problems because it is easily changed by the structure of ignitors, cable length and characteristics. In this paper, therefore, 3 ignitors, which are LC resonant typed, arc-gap circuit typed and drive frequency variable typed, have simulated and analysed with the 25[m] cable length. After careful consideration of comparisons made of all the ignitors' and cables' characteristics, a number of possible solutions were finalized.

Flow Coefficient Experiments of a Hypergolic Igniter with Rupture Disc Ends (파열판 방식 연소기 점화기의 유량계수 시험)

  • Yoo, Jaehan;Lee, Joongyoup;Lee, Soo Yong
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Many of the liquid rocket engines use a hypergolic igniter with rupture disc ends located in the combustion chamber ignition line. In this study, the flow coefficient tests of the igniter, which have a solenoid valve upstream, were performed. The tension-type rupture discs for radial and circumferential scores and the igniter with them were tested using water at room temperature. The effects of the score, flow rate, the disc thickness, gas pocket and the solenoid valve on the coefficient were analyzed.

Ignition Studies Of Igniter using Hydrogen Peroxide And Kerosene (Catalyst Ignition) (과산화수소/케로신(촉매점화) 점화기의 점화특성에 관한 연구)

  • Kim, Ki-Woo;Kim, Tae-Wan;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.57-60
    • /
    • 2009
  • Exothermic and ignition characteristic of igniter is very important factor in engine performance. Since the igniter performance is effected by Hydrogen Peroxide decomposition rate, we have to test the preliminary catalyst performance test. In this report, after making igniter using hydrogen peroxide/kerosene, a thermal characteristic were examined by comparing hydrogen peroxide mass and catalyst mass. And then we study ignition characteristic of the affects of O/F ratio using the previous data.

  • PDF

Development of a gas generator igniter for a space launch vehicle (우주발사체 가스발생기용 점화기 개발)

  • Kwon, Mi-Ra;Lim, Jae-Hyock;Choi, Byeong-O;Lee, Jung-Bok;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.125-128
    • /
    • 2010
  • A pyrotechnic igniter with a relatively simple configuration was developed to secure the stable and reliable ignition of the gas generator in space launch vehicles. It was designed not only to provide a sufficient heat flux for the propellant ignition but also to ensure a structural safety under the conditions of very high temperatures and pressures. The burning tests of the igniters have been performed to decide several design parameters, and consequently the performance tests have proved that the pyrotechnic igniter developed in this study meets the design requirements.

  • PDF

Development of Numerical Model for Igniter and Study on Initial Ignition of Interior Ballistics (강내탄도의 점화기 해석 모델 개발 및 초기 점화 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Lee, Sang-Bok;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2013
  • A numerical model of the igniter for the interior ballistics has been developed by combining lumped parameter model with the theoretical equation of orifice. With the developed model of the igniter, the numerical study on characteristics of the interior ballistics has been conducted according to the igniter configuration in terms of igniter length, side hole diameter, and distribution of side holes. As results of the calculation of the pressure difference between the breech and shot base, the low-cycle oscillations have been influenced by the igniter length, while the high-cycle oscillations have been affected by the side hole diameter and the distribution of side holes.

A Study for Reduction of Ignition Peak Pressure of Gas Generator (가스발생기의 점화 초기압력 저감화 연구)

  • Cha, Hong-Seok;Oh, Seok-Jin;Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.138-141
    • /
    • 2010
  • A study to reduce the ignition peak pressure of gas generator for the missile launching system was accomplished. The igniter, as the energy release device for igniting the propellant, is aimed at simultaneous ignition of bundled 3-layered propellant grain without unstable burning. In case of our gas generator which must use the double-base propellant with low ignition property, the fast ignition of propellant and reduction of initial peak pressure should be required for the satisfaction of ejection velocity and acceleration condition. By applying MTV ignition charge for the igniter of gas generator, we accomplished all system performance requirements.

  • PDF

Development of Numerical Model for Igniter and Study on Initial Ignition of Interior Ballistics (강내탄도의 점화기 해석 모델 개발 및 초기 점화 연구)

  • Sung, Hyung-Gun;Jang, Jin-Sung;Choi, Dong-Whan;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.953-961
    • /
    • 2011
  • A numerical model of the igniter for the interior ballistics has been developed combining the lumped parameter model with the theoretical equation of the orifice. With the developed model of the igniter, the numerical study on characteristics of the interior ballistics according to the igniter configuration in terms of the igniter length, the side hole diameter, and the distribution of side holes has been conducted. As results of the calculation of the pressure difference between the breech and shot base, the low frequency oscillations have been influenced by the igniter length, while the high frequency oscillations have been affected by the side hole diameter and the distribution of side holes.

  • PDF