• Title/Summary/Keyword: 점착강도

Search Result 273, Processing Time 0.022 seconds

Evaluation on Stress-Strain-Strength Behavior of the Textile Encased Soils via Triaxial Compression Tests (삼축압축시험을 통한 섬유로 구속된 흙의 응력-변형률-강도 거동 평가)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.643-653
    • /
    • 2013
  • Recently, there are an increasing number of studies on the method of wrapping the outer wall of granular piles with geosynthetic fibers such as geotextile or geogrid that has a certain level of tensile strength as an alternative method for the ground improvement techniques. In this study, triaxial compression tests are performed on the sand and clay specimen encased with various textiles to evaluate the reinforcing effect with regard to the tensile strength of the textile. Furthermore, triaxial compression tests are performed on the clay specimen inserted by sand only and sand encased with geosynthetics to compare behavioral differences between the conventional sand compaction pile and geosynthetic encased sand pile with regard to the replacement ratio, ${\alpha}_s$ and the tensile strength of the geosynthetics. Based on the experimental results, the strength enhancement due to the textile is affected by the longitudinal tensile strength rather than the transverse one of the applied textile. The effect of the confinement by the textile encasement results in the large increase of the cohesions. The overall behaviors, such as shear strength, pore pressure parameter at failure and stress ratio, of the geosynthetic encased sand pile is quite different from those of the conventional sand compaction pile.

The Influence of Pre-compression on the Shear Characteristics of Cohesive Soil (선행압축(先行壓縮)이 점성토(粘性土)의 전단특성(剪斷特性)에 미치는 영향(影響))

  • Kang, Yea Mook;Park, Heon Young
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.277-291
    • /
    • 1983
  • In order to investigate the shear characteristics of earth structure after construction. Four sample soils with different gradation were selected and compacted under the optimum moisture content and the maximum dry density. And the direct shear test and the triaxial compression test were performed with those sample soils under various pre-compression loads. The results were summarized as follows; 1. With the increase of the percent passing of No. 200 sieve, the cohesion of soil increased regularly and the internal friction angle of soil decreased with slow ratio. 2. The pre-compression increased the shear strength of compacted cohesive soil. The increase of cohesion was very apparent but the internal friction angle didn't show such regular tendency. 3. With the increase of pre-compression load, the slope of stress-strain curve showed steep at the early stage of horizontal strain. The vertical strain was small at the compression stage and big at the expansion stage. 4. When the vertical stress of shear test with increase in the horizontal strain was small, stress ratio(shear stress vs. vertical stress) of sample showed the largest value and the slope of stress ratio curve showed also steep. 5. When the sample was had the same condition, the cohesion of soil showed bigger value in the triaxial compression test and the internal friction angle of soil showed bigger value in the direct shear test.

  • PDF

Characteristics of Sedimented Sandy in Nackdong River Delta (낙동강 델타지역 퇴적사질토의 특성)

  • Kim, Byeong-Jun;Kim, Jae-Hong;Jung, Jin-Yeong;Kwon, Jeong-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.25-33
    • /
    • 2016
  • This study was a basic research to obtain the knowledge of physical properties of the upper sedimented sandy soil in the Nakdong river delta area. The characteristics of shear strength and permeability with fine content and relative density were also investigated. The upper sedimented sandy soil near paddy and lower soft clay layers showed high percentage of fine content, and the rest parts had about 5% of fine content. The specific gravity regardless of depth and location was almost constant. The upper sedimented sandy soil mostly had particle size about 0.1 ~ 0.4mm regardless of sedimentation environment and has illite, a clay mineral, in the entire soil samples. The results of direct shear tests on remolded specimens of the upper sedimented sandy soil revealed that the friction angle and cohesion increased with relative density, but its effect was not significant. The fine content was significant, that as increasing it, the friction angle decreased and cohesion increased linearly. The permeability decreased with relative density and fine content, and the permeability of soil containing more than 15% of fine content was independent on the relative density.

Floc Property of Yeongsan Cohesive Bed Sediment with Respect to Salinity and Sediment Concentration (점착성 퇴적물의 염분과 퇴적물농도에 따른 플럭 특성: 플럭카메라를 이용한 실험연구)

  • Shin, Hyun-Jung;Smith, S. Jarrell;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.122-130
    • /
    • 2013
  • To examine floc characteristics of cohesive bed sediment of the Yeongsan River estuary, a floc camera system has been developed and utilized to observe flocs under varying conditions. In order to validate the floc camera system, sand particles were passed through 88-125 and $63-88{\mu}m$ sieves and observed within the laboratory. Mean grain size and settling velocities were found to be 102 and $56.2{\mu}m$ and 6.7 and 5.9 mm/s, respectively. Artifacts of particles estimated outside of the sieve range are attributed to being imaged out of the depth of focus. However, as mean grain size and settling velocity of each size class were within the confidence interval, the floc camera system was confidently used to examine cohesive bed sediments of Yeongsan River estuary. The bed sediment sample was prepared with a concentration of 0.1 g/L in 0 psu deionized water. The mean grain size, settling velocity and fractal dimension of flocs were $40.6{\pm}0.66{\mu}m$, 14 mm/s, and 2.86, respectively. Experiments were also conducted using different salinities (10 and 34 psu) and sediment concentrations (0.1 and 0.3 g/L). Despite changing these parameters, the mean observed grain size and settling velocities were found to be the same within the error range of the system. The relatively higher values of settling velocity and fractal dimension are considered a result of the sediment containing relatively small concentrations of organic matter. Moreover, consistent floc size over various grain sizes and concentrations may be the result of insufficient turbulence to aggregate flocs.

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

Estimation of Shear Strength Along Concrete Construction Joints Considering the Variation of Concrete Cohesion and Coefficient of Friction (콘크리트 시공줄눈 면에서 점착력 및 마찰계수의 변화를 고려한 전단내력 평가)

  • Yang, Keun-Hyeok;Kwon, Hyuck-Jin;Park, Jong-Beom
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.106-112
    • /
    • 2017
  • This paper presents a mathematical model derived from the upper-bound theorem of concrete plasticity to rationally evaluate the shear friction strength of concrete interfaces with a construction joint. The upper limit of the shear friction strength was formulated from the limit state of concrete crushing failure on the strut-and-tie action along the construction joints to avoid overestimating the shear transfer capacity of a transverse reinforcement with a high clamping force. The present model approach proposed that the cohesion and coefficient of friction of concrete can be set to be $0.27(f_{ck})^{0.65}$ and 0.95, respectively, for rough construction joints and $0.11(f_{ck})^{0.65}$ and 0.64, respectively, for smooth ones, where $f_{ck}$ is the compressive strength of concrete. From the comparisons with 155 data compiled from the available literature, the proposed model gave lower values of standard deviation and coefficient of variation of the ratios between predictions and experiments than AASHTO and fib 2010 equations, indicating that the proposed model has consistent trends with test results, unlike the significant underestimation results of such code equations in evaluating the shear friction strength.

The Physical and Shear Strength Properties of the Weathered Limestone Soils in Changsung and Hwasun Area of Chonnam Province, Korea (전라남도 장성과 화순에 분포하는 석회암풍화토의 물성 및 전단 특성)

  • 김해경
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.335-344
    • /
    • 2003
  • This study is focused to the physical and shear strength properties of the weathered limestone soils distributed in Changsung and Hwasun area, Chonnam province. Disturbed soil was used as soil samples. To grasp the physical and shear strength properties of weathered limestone soil, specific gravity test, atterberg limit, grain size distribution and direct shear test were conducted in the laboratory. The physical and shear strength properties of the weathered limestone soil in the study areas are as follows. The range of specific gravity (Gs) is 2.78 to 2.80, liquid limits (LL) 37 to 38 (%), plasticity index (PI) 13.7 to 15.4, and soil classification CL. The range of strength parameters by direct shear test (vd, $1.5t/\textrm{m}^3$) is 3.07 to 4.4 ($t/\textrm{m}^2$) of cohesion and 34.8 to $42.4^{\circ}$ of internal friction angle in unsaturated soils. As a result of comparing with the weathered granite soils (Yang, 1997: Mun, 1998: Park, 1998), it is considered that physical properties of the weathered limestone soils in this study are different from the weathered granite soils. On the other hand, internal friction angle of shear parameters is found to be similar.

Analysis on Failure Critical Depth of Unsaturated Landslide Zone According to the Geological Condition (지질별 불포화토 사면의 붕괴 임계심도 분석)

  • Nam, Koung-Hoon;Kim, Min-Gyu;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.299-304
    • /
    • 2015
  • Slope stability analysis of unsaturated soil slopes due to rainfall infiltration is an important issue in evaluating landslide analysis and stability assessment. The purpose of this study is to establish the critical depth considering weathered soil of parent rock and rainfall intensity at main scarp in national landslide. Based on the analytical results, it is found that as rainfall duration and Slope angle increased, the critical depth of gneiss-weathered soil increased from 3.00 m to 3.77 m, the critical depth of granite weathered-soil increased from 1.75 m to 2.40 m, and the critical depth of mudstone-weathered soil increased from 3.00 m to 4.15 m, respectively. The critical depth of granite-weathered soil with low cohesion and high internal friction angle is much lower than those of other soils. It is interestingly shown that a decrease in the safety factor is highly significant, much affected by the slope increase rather than the rainfall intensity.

Development and Calibration of a Permanent Deformation Model for Asphalt Concrete Based on Shear Properties (아스팔트 콘크리트의 전단 물성을 고려한 영구변형 모형 개발 및 보정)

  • Lee, Hyun-Jong;Baek, Jong-Eun;Li, Qiang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.61-70
    • /
    • 2011
  • This study developed a permanent deformation model for asphalt concrete based on shear properties. Repeated load triaxial compression (RLTC), triaxial compressive strength, and indirect tension strength tests were performed for the three types of asphalt mixtures at various loading and temperature conditions to correlate shear properties of asphalt mixtures to rutting performance. For the given mixtures, as testing temperature increased, cohesion decreased, but friction angle was insensitive to temperature at $40^{\circ}C$ or higher. It was observed that deviatoric stress, confining pressure, temperature, and load frequency affected the permanent deformation of asphalt mixtures significantly. The permanent deformation model based on shear stress to strength ratio and loading time was developed using the laboratory test results and calibrated using accelerated pavement test data. The proposed model was able to predict the permanent deformation of the asphalt mixtures in a wide range of loading and temperature conditions with constant model coefficients.

The Mechanical Properties of Limestones Distributed in Jecheon (제천지역 석회암의 역학적 특성에 관한 연구)

  • Kim, Jong Woo;Kim, Min Sik;Kim, Pyoung Gi;Nor, Seung Jae;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.354-364
    • /
    • 2012
  • In order to evaluate the physical properties of rock which might serve as a database for both mining and civil works, a lot of laboratory tests for Jecheon limestones were conducted to find unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, poisson's ratio, tensile strength, shore hardness, friction angle and cohesion. On investigation of the mechanical properties of both the gray limestone and the clayey limestone distributed in the studied region, the clayey limestone turned out to have more weak mechanical properties which might come from low unit weight, high absorption ratio and high porosity of rocks. The failure criteria of Jecheon limestones were discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion. Regression analyses of the physical properties obtained from a lot of laboratory tests were also conducted by means of both linear and multiple regression analyses.