• Title/Summary/Keyword: 점진적 소성화

Search Result 16, Processing Time 0.017 seconds

Ultimate Strength Analysis of Space Steel Frames Considering Spread of Plasticity (점진적 소성화를 고려한 공간 강뼈대구조의 극한강도해석)

  • Kim, Sung Bo;Han, Jae Young;Park, Soon Cheol;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.299-311
    • /
    • 2003
  • This paper presents a finite element procedure to estimate the ultimate strength of space frames considering spread of plasticity. The improved displacement field is introduced based on the inclusion of second-order terms of finite rotations. All the non-linear terms due to bending moment, torsional moment, and axial force are precisely considered. The concept of plastic hinges is introduced and the incremental load/displacement method is applied for elasto-plastic analyses. The initial yield surface is defined based on the residual stress, and the full plastification surface is considered under the combined action of axial forces, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for the ultimate strength of space frames are compared with available solutions and experimental results.

Nonlinear Inelastic Analysis of 3-Dimensional Steel Structures Using Fiber Elements (화이버 요소를 이용한 3차원 강구조물의 비선형 비탄성 해석)

  • Kim, Seung-Eock;Oh, Jung-Ryul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.347-356
    • /
    • 2006
  • In this paper, practical nonlinear inelastic analysis method of 3-dimensional steel structures accounting for gradual yielding with fibers on a section is developed. Geometric nonlinearities of member(p-$\delta$) and frame(p-$\Delta$) are accounted for by using stability functions. Residual stresses are considered by assigning initial stresses to the fiber on the section. The elastic core in a section is investigated at every loading step to determine the axial and bending stiffness reduction. The strain reversal effect is captured by investigating the stress change of each fiber. The proposed analysis proves to be useful in applying for practical analysis and design of three-dimensional steel frames.

Advaced analysis and optimal design of steel arch bridges (강아치교의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.13-21
    • /
    • 2005
  • Advanced analysis and optimal design of steel arch bridges is presented. In the design method using an advanced analysis, separate member capacity checks after analysis are not required because the stability and strength of the structural system and its component members can be rigorously treated in the analysis. The geometric nonlinearity is considered by using the stability function. The Column Research Council tangent modulus is used to account for gradual yielding due to residual stresses. A parabolic function is used to represent the transition from elastic to zero stiffness associated with a developing hinge. An optimization technique used is a modified section increment method. The member with the largest unit value evaluated by AASHTO-LRFD interaction equation is replaced one by one with an adjacent larger member selected in the database. The objective function is taken as the weight of the steel arch bridge and the constraint functions account for load-carrying capacities and deflection requirements. Member sizes determined by the proposed method are compared with those given by other approaches.

Elasto-plastic Post-buckling Analysis of Spatial Framed Structures using Improved Plastic Hinge Theory (개선된 소성힌지이론을 이용한 공간 뼈대구조물의 탄-소성 후좌굴 해석)

  • Kim, Sung Bo;Ji, Tae Sug;Jung, Kyoung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.687-696
    • /
    • 2006
  • An efficient numerical method is developed to estimate the elasto-plastic post-buckling strength of space-framed structures. The inelastic ultimate strength of beam-columns and frames is evaluated by the parametric study. Applying the improved plastic hinge analysis that evaluate the gradual stiffness decrease effects due to spread of plasticity, elasto-plastic post-buckling behavior of steel frames is investigated considering the various residual stress distributions. Introducing the plastification parameter that represent pread of plasticity in the element and performing parametric study of equivalent element force and member idealization, finite-element solutions for the elasto-plastic analysis of space frames are compared with the results by plastic region analysis, shell elements and experimental results.

Length of Plastic Hinge in RC Columns under Cyclic Loading (반복 하중을 받는 철근콘크리트 기둥의 소성힌지 길이)

  • Park, Jong-Wook;Choi, Im-Jun;Moon, Cho-Hwa;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.11-12
    • /
    • 2009
  • The small height to depth ratio column dominated by shear after tension steel yielded and the energy dissipation capacity reduce remarkably due to the affection of axial force. This procedure incur in the plastic hinge region and not in all of the region at the same time but from somewhere where the energy was concentrated. This study was reported about the variation of length of the plastic hinge under cyclic loading of the RC columns through the test.

  • PDF

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Nonlinear Dynamic Analysis of Space Steel Frames (공간 강뼈대 구조물의 비선헝 동적 해석)

  • Kim Seung-Eock;Cuong Ngo-Huu;Lee Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.395-404
    • /
    • 2005
  • This paper presents a reliable numerical procedure for nonlinear time-history analysis of space steel frames subjected to dynamic loads. Geometric nonlinearities of member (P-$\delta$) and frame (P-$\Delta$) are taken into account by the use of stability functions in framed stiffness matrix formulation. The gradual yielding along the member length and over the cross section is included by using a tangent modulus concept and a softening plastic hinge model based on the New-Orbison yield surface. A computer program utilizing the average acceleration method for the integration scheme is developed to numerically solve the equation of motion of framed structure formulated in an incremental form. The results of several numerical examples are compared with those derived from using beam element model of ABAQUS program to illustrate the accuracy and the computational efficiency of the proposed procedure.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

Nonlinear Analysis of 3-D Steel Frames (3차원 강뼈대구조의 비선형 해석)

  • Kim, Seung Eock;Kim, Yo Suk;Choi, Se Hyu;Kim, Sung Mo;Choi, Joon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.417-424
    • /
    • 1999
  • In this paper a nonlinear analysis of three-dimensional steel frames is developed. This analysis accounts for material and geometric nonlinearities. The material nonlinearity includes gradual yielding associated with flexural behaviors. The geometric nonlinearity includes the second-order effects associated with $P-{\delta}\;and\;P-{\Delta}$ effects. The material nonlinearity at the node is considered using the concept of P-M hinge consisting of many fibers. The geometric nonlinearity is considered by the use of stability function. The nonlinearity caused by shear and torsional interaction effects is neglected. The modified incremental displacement method is used as the solution technique. The load-displacements predicted by the proposed analysis compare well with those given by other approaches.

  • PDF