본 연구에서는 이표본 구간 자료의 확률적 순서 검정 절차를 제안한다. 제안하는 검정 통계량은 U-통계량에 해당하며 본 연구에서는 이에 대한 점근적 분포를 귀무 가설 하에서 유도하였다. 실제 자료와 모의 실험을 통해 새로 제안한 방법의 성능을 단측 이변량 Kolmogorov-Smirnov 검정법과 비교한다.
이동통신 시스템을 분석할 때 중요한 여러길 전파를 모형화하는 데에는 곱셈꼴 잡음이 쓸모있다고 알려져 있다. 이 논문에서는 곱셈꼴 잡음에서 약한 신호의 비모수 검파를 생각한다. 관측값의 부호와 순위를 바탕으로 한국소최적 검파기는 어떤 잡음 분포에서도 신호의 세기가 약할 때 이를 검파하는 성능이 좋도록 한 것이다. 이 검파기는 곱셈꼴 잡음에서 확률 신호를 검파하는 국소최적 검파기와 비슷하다는 것을 보인다. 그리고, 이 비모수 검파기는 국소최적 검파기와 점근적으로 거의 같은 성능을 갖는다는 것을 보인다.
우리는 두꺼운 꼬리를 갖는 분포의 모수를 추정하는 방법론을 연구하였다. 일반적으로 MLE(최대우도 추정량)가 모수추정 방법론중에 가장 많이 사용되는데, 이는 MLE가 점근적 일치성과 정규성 그리고 효율성을 가지고 있기 때문이다. 하지만 MLE가 늘 가장 좋은 추정법은 아니다. 어떤 경우에는 MLE가 존재하지 않을 수도 있고 계산이 안정적이지 않을 수도 있다. 본 논문에서는 비선형 최소제곱추정법을 이용한 모수추정 방법론을 제시하고 그 성능을 MLE와 비교하였다. NLS 추정량은 empirical CDF와 이론적 CDF의 차이의 제곱을 최소화 하는 방법론이다. 본 논문에서는 두꺼운 꼬리를 가지는 다양한 분포하에서 우리가 제안하는 NLS방법론과 MLE와의 성능을 비교하였다. 그 결과, Burr 분포에서 표본의 수가 적을 때 우리의 방법론이 MLE보다 좋은 성능을 보여주었고, Frechet 분포에서도 좋은 결과를 얻을 수 있었다.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.433-450
/
2012
연구자가 같은 작업을 반복적으로 수행할 때, 작업 효율성은 연구에 관련된 지식, 경험, 기술이 축적되면서 향상된다. 결과를 얻기 위해 연구에 투자하는 시간은 같은 작업을 반복함으로써 줄일 수 있다. 이러한 현상을 학습곡선 효과(learning curve effect)라고 일컫는다. 학습곡선(learning curves)은 학습의 변화를 시각적으로 나타낸 것으로 이전의 학습곡선 연구에서는 시간을 일정한 구간으로 나누어 구간별 작업에 대한 숙련도의 평균 차이 여부를 확인하였다. 이러한 방법은 구간을 어떻게 나눌 것인가 하는 기준이 존재하지 않으며, 더욱이 이항 반응 자료로 모형을 적합하기 어려운 문제점을 가지고 있다. 본 연구에서는 이산형 확률변수 중 이항 반응 자료(베르누이자료)에 대한 학습곡선의 통계적 모형에 초점을 맞추고자 한다. 누적확률분포의 특성을 이용하여 모수를 추정하기 위해서 뉴튼-랩슨 방법(Newton-Raphson method)을 사용하였고, 이 연구에서 제안한 모형의 점근적 분포를 구하였다.
본 논문에서는 1998.01.03부터 2011.08.31까지 수집된 코스피 지수 자료로부터 계산된 일별 로그수익률과 일별 로그손실률에 대한 극단값 통계분석을 수행하였다. 사용된 극단값 통계분석 모형은 포아송-GPD 모형이고 모수의 추정과 극단분위수의 추정은 최대가능도 방법을 적용하였다. 본 논문에서는 또한 포아송-GPD 모형에 추가적으로 모수의 무정보사전분포를 가정한 베이지안 방법을 고려하였다. 여기서는 마르코프 연쇄 몬테칼로 방법을 적용하여 모수와 극단분위수를 추정하였다. 분석 결과 최대가능도 방법과 베이지안 방법에서 모두, 로그수익률 분포의 오른쪽 꼬리는 정규분포보다 짧은 반면, 로그손실률 분포의 오른쪽 꼬리는 정규분포보다 두텁다는 결론이 얻어졌다. 극단값 분석에서 베이지안 방법을 사용할 때의 장점은 정칙조건이 만족되지 않는 경우에도 최대가능도추정량의 전통적 점근 성질을 걱정할 필요가 없고 예측의 경우에는 모수의 불확실성과 미래 관측치의 불확실성이 모두 반영되는 효과가 있다는 것이다.
Journal of the Korean Data and Information Science Society
/
제20권2호
/
pp.251-260
/
2009
이 논문에서는 단순 선형회귀 모형에서 회귀 계수의 최적 추정량을 구할 수 있는 자기공분산에 근거한 추정 방법을 제시하였다. 이 방법이 직관적으로 매혹적이지는 않지만 이 최적 추정량이 해당 회귀 계수의 불편추정량이 된다. 설명변수가 0과 1사이의 균등간격의 값을 가지면, 오차가 자기회귀 이동평균 모형을 따르면 성립하는 조건 하에서 이 최적 추정량이 최소제곱 추정량과 점근적으로 통일한 분포를 가진다는 것을 보였다. 추가적으로 똑같은 조건 하에서 이 최적 추정량이 해당 회귀 계수에 확률상 수렴한다는 것을 자체적으로 입증하였다.
본 연구에서는 복합금융그룹의 부실위험을 그룹전체기반 측도로 측정하는 방법론을 비교하고 국내 복합금융그룹의 자료를 이용하여 실증분석한다. Joint Forum(2001a) 방법은 연결기준을 사용하여 그룹내 자본의 중복요소들을 상계한 후 필요자본 대비 자기자본비율을 구한다. 신BIS 규제자본 방법은 Vasicek(1987)의 점근적 단일위험 모형을 가정하여 자산의 전체기반 위험을 측정하고 연결기준을 사용하여 자본의 중복계상을 배제하여 측정한다. 개별 경제적 자본 방법은 개별 경제적 위험을 수준별로 합산하여 전체기반 경제적 자본을 빌딩블록 방식으로 합산한다. 경제적 자본 방법은 위험 측정시 겪게 되는 극단적 손실 문제와 결합분포의 비대칭성을 반영할 수 있는 방법을 측정시 포함시킬 수 있다. 국내 복합금융그룹의 자료를 이용하여 실증분석을 한 결과, 첫째, 개별 재무지표에서 복합금융그룹 소속회사들의 ROA, ROA 변동성 그리고 총자산 대비 자기자본비율이 우량한 것으로 나타났다. 특히 가장 비중이 큰 은행산업에서 위 개별 재무지표는 복합금융그룹 소속회사에서 우량하게 나타난다. 둘째, 그룹전체기반 위험자본 측도로서 필요자본 대비 자기자본 비율과 연결기준 BIS비율을 살펴본 결과 은행계열 금융그룹의 부실위험이 낮은 것으로 판단된다. 전체적으로 국내 복합금융그룹의 부실위험은 높지 않은 것으로 판단된다. 이상의 결과를 바탕으로 복합금융그룹에 대한 리스크상시감시방안에의 시사점을 살펴보면, 첫째, 복합금융그룹 소속 금융회사에 대한 리스크 평가시 그룹전체기반 부실위험평가를 반영하여 이를 측정할 필요가 있다. 둘째, 권역별로 통일된 리스크감시를 위해 권역별 자기자본규제의 형평성을 제고할 필요가 있다.
본 논문에서는 직교 위상 수신기에서 발생하는 동상 성분 채널과 직교 성분 채널간의 이득과 위상 불평형의 추정문제를 다룬다. 즉, 자동 보정 기능을 가지는 직교 위상 수신기에서의 백색 Gaussian 잡음을 고려한 통계적인 특성 분석을 통하여 제안된 알고리즘에 의한 추정값이 점근적으로 비편향 최소 분산 추정(asymptotically minimum-variance unbiased estimate) 특성을 가짐을 보여준다. 이를 위하여 먼저 자동 보정 알고리즘에서 사용하는 샘플링 값들에 대한 통계적인 특성을 구하고, 이 샘플 값들의 함수의 형태로 구해지는 이득과 위상 불평형 추정값들의 통계적인 특성을 분석하기 위해 추정값들의 확률분포함수를 구한다. 이를 기반으로 평균 함수 및 분산 함수를 계산하여 추정값들이 비편향 최소 분산 추정 특성을 나타냄을 확인한다.
현존하는 세장선 이론과는 아주 다르게 Kelvin 소오스와 그의 궤적 주위에 대한 점근전개를 행하여 전진 운동을 하는 세장체에 대한 공식을 유도하였다. 여기서 발전된 공식은 기본적으로 Neumann-Kelvin 문제의 Kernel함수에 대한 근사와 동등하게되었다. 경계치 문제는 현저하게 단순화되었으며 해는 선수 끝에서 시작하는 축차적분의 진행 절차에 따라 얻어졌다. 속도장과 압력분포는 2차원 속도 포텐시열의 미분에 의해 간단히 계산될 수 있었다. 이 방법은 비록 컴퓨터의 사용에는 Neumann-Kelvin문제처럼 많은 시간이 필요하게 되더라도 선체 주위의 유동장의 수치해석에 더욱 정확하리라는 가능성을 준다. 전진하는 진동 세장체의 문제에도 같은 방법이 유용하리라는 것을 또한 기대한다.
Journal of the Korean Data and Information Science Society
/
제22권5호
/
pp.839-847
/
2011
이 연구에서는 다중 선형회귀 모형에서 자기공분산에 근거한 회귀 계수의 추정량을 도출하였다. 자기공분산에 근거한 방법은 Park (2009)에 제시된 방법으로 직관적으로 매혹적이지는 않지만, 이것에 근거한 추정량이 회귀 계수의 불편추정량이 된다. 설명변수 벡터가 어떤 정칙조건을 만족한다면, 오차가 자기회귀이동평균 모형을 따르면 만족되는 약한 조건 하에서 이 추정량이 최소제곱 추정량과 점근적으로 동일한 분포를 가지며 또한 회귀 계수에 확률 상 수렴한다는 것을 보였다. 마지막으로 모의실험을 통해 이 성질들이 소표본에서도 성립하는 것을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.