• Title/Summary/Keyword: 절리 암반

Search Result 508, Processing Time 0.024 seconds

A Study on the Flow Characteristics of Groundwater and Grout in Jointed Rock (절리암반내 지하수 및 주입재의 유동특성에 관한 연구)

  • 문현구;송명규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.229-240
    • /
    • 1999
  • The groundwater flow and grout flow in individual rock joint and jointed rock mass are studied using various methods of analysis such as (i) the finite difference method, (ii) channel network analysis and (iii) joint network analysis. The flow behaviour is investigated in two distinguishable scales of observation: one for a rough joint of a laboratory scale having variable aperture, and the other for field- scale rock masses having three sets of intermittent joints. In the former case, the aperture-dependent channel flow is identified for both water and grout flows. The comparison of the flow rate in a rough joint is made between the finite difference analysis and existing analytical solution. In the latter case, the effects of increasing number of joints on the groundwater inflow into a circular opening of various diameters are analyzed using both the joint network method and Goodman's analytic solution. Comparisons are made between the two methods. The boundary effects in the joint network method are discussed. The inhomogeneity of joint network and its impacts on the groundwater inflow are also discussed.

  • PDF

A Study on Precision Measurement of Rock Joint Using 3D-Laser Scanner (3D-Laser scanner를 이용한 암반 절리의 정밀측정에 관한 연구)

  • 이승호;황영철;김세현;심석래;정태영
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.103-111
    • /
    • 2004
  • The existing methods that can be adopted for measuring joints involve either to use borehole or photogrammetry. Due to restricted space, acquisition of data in limited area, and measurement errors, above methods have limitations acquiring the objective and correct results. To get over defects of existing joint measurement methods, joints have been measured using 3D-Laser scanner with accuracy and efficiency. This research aims to investigate an accuracy and applicabiliy of 3D-Laser scanner for measuring rock slope joints. Measurement of rock slope joints has been executed using 3D-Laser scanner & clinometer and then, results from both methods are compared. Results from both methods indicate that they show nearly equal features for joint distributions and numbers of joint information obtained by 3D-Laser scanner are much more than ones measured using clinomer. Therefore, 3D-Laser scanner turns out to be very effective by the fact that it contributes to reduce investigation costs & periods, objectify data from rock slope joints.

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

A Study on Joint by Two-Stage Excavation in Tunnel (2단계로 굴착되는 터널의 절리에 대한 연구)

  • Byun Gwang-Wook;An Joung-Hwan;Kim Dong-Gab;Lee Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.185-194
    • /
    • 2005
  • Recently, the surrounding rock mass is understood as the major support system for the tunnel constructed in the rock mass. Generally, the rock mass contains many discontinuity planes such as joints, and thus, the tunnel behavior in the rock mass is governed by the characteristics of the discontinuity planes. In this study, the behavior of tunnel in jointed rock mass is studied by model tests and numerical analyses. The results shows that the behavior of tunnel depends on the different initial stress conditions, in case that the tunnel is excavated in the ground without any joints. When a joint is located near the tunnel, the pound stress and displacement tend to increase between the tunnel and the joint.

A Comparative Study on the REV, non-REV and Joint Network Methods for Analysis of Groundwater Flow in Jointed Rock Masses (절리암반내 지하수 유동해석을 위한 대표체적법, 비대표체적법 및 절리망 해석법의 비교 연구)

  • 문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.217-228
    • /
    • 1999
  • The three methods of analysis (i) REV(representative elemental volume), (ii) non-REV and (iii) joint network analysis are introduced in this paper to analyze the groundwater flow in jointed rock mass and the inflow into underground excavations. The results from those methods are compared one another to reveal their characteristics by varying the number of joints and the diameter of the opening. The pre-processor, the so-called sequential analysis, is introduced to predict the equivalent hydraulic conductivity of a jointed rock mass having a number of intersecting joints. Using the finite element mesh, joint map and sequential analysis, the equivalent hydraulic conductivities are calculated for all 445 elements. The hydraulic inhomogeneity and the determination of the representative properties of jointed rock masses are discussed. In the REV analysis where the entire rock mass is homogenized through the representative properties, the inflow is increased regularly and consistently by increasing the joint density, the opening size and the conductivity contrast value. Though the non-REV analysis showed irregular variation of the inflow due to the local inhomogeneity allowed to individual elements, the inflow approached the REV results as the characteristic length increases. The joint network analysis showed the most sensitive reaction to the joint density, the opening size and the presence of the network crossing the opening. The reliability of the network analysis depends on the geometric data of individual joints. In view of the limited field data on joint geometry and possible uncertainty the REV and non-REV methods are considered more practical and rational than the joint network analysis.

  • PDF

A Study of Statistical Analysis of Rock Joint Directional Data (암반 절리 방향성 자료의 통계적 분석 기법에 관한 연구)

  • 류동우;김영민;이희근
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • Rock joint orientation is one of important geometric attributes that have an influence on the stability of rock structures such as rock slopes and tunnels. Especially, statistical models of the geometric attributes of rock joints can provide a probabilistic approach of rock engineering problems. The result from probabilistic modeling relies on the choice of statistical model. Therefore, it is critical to define a representative statistical model for joint orientation data as well as joint size and intensity and build up a series of modeling procedure including analytical validation. In this paper, we have examined a theoretical methodology for the statistical estimate and hypothesis analysis based upon Fisher distribution and bivariate normal distribution. In addition, we have proposed the algorithms of random number generator which is applied to the simulation of rock joint networks and risk analysis.

Calculation of Joint Center Volume (JCV) for Estimation of Joint Size Distribution in Non-Planar Window Survey (비평면 조사창에서의 암반절리 크기분포 추정을 위한 Joint Center Volume (JCV) 산정 기법 제안)

  • Lee, Yong-Ki;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.89-107
    • /
    • 2019
  • Rock joints have an extremely important role in analyzing the mechanical stability and hydraulic characteristics of rock mass structures. Most rock joint parameters are generally indicated as a distribution by statistical techniques. In this research, calculation technique of Joint Center Volume (JCV) is analyzed, which is required for estimating the size distribution having the largest uncertainty among the joint parameters, then a new technique is proposed which is applicable regardless of the shape of survey window. The existing theoretical JCV calculation technique can be applied only to the plane window, and the complete enumeration techniques show the limitations in joint trace type and analysis time. This research aims to overcome the limitations in survey window shape and joint trace type through calculating JCV by using Monte Carlo simulation. The applicability of proposed technique is validated through the estimation results at non-planar survey windows such as curved surface and tunnel surface.

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

The Mechanical Behavior of Jointed Rock Masses by Using PFC2D (PFC2D를 이용한 절리암반의 역학적 물성 평가연구)

  • Park Eui-Seob;Ryu Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.119-128
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.

Effects of 3-D Fracture Tensor Parameters on Deformability of Fractured Rock Masses (삼차원 절리텐서 파라미터가 절리성 암반의 변형특성에 미치는 영향)

  • Ryu, Seongjin;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.66-81
    • /
    • 2021
  • The effects of directional fracture tensor components and first invariant of fracture tensor on deformation moduli and shear moduli of fractured rock masses is analyzed based on regression analysis performed between 3-D fracture tensor parameters and deformability of DFN blocks. Using one or two deterministic joint sets, a total of 224 3-D discrete fracture network (DFN) cube blocks were generated with various configurations of deterministic density and probabilistic size distribution. The fracture tensor parameters were calculated for each generated DFN systems. Also, deformability moduli with respect to three perpendicular direction of the DFN cube blocks were estimated based on distinct element method. The larger the first invariant of fracture tensor, the smaller the values for the deformability moduli of the DFN blocks. These deformability properties present an asymptotic pattern above the certain threshold. It is found that power-law function describes the relationship between the directional deformability moduli and the corresponding fracture tensor components estimated in same direction.