• Title/Summary/Keyword: 절리면 전단실험

Search Result 28, Processing Time 0.027 seconds

The Influence of Rock Joint Roughness and Normal Stress on Shear Behaviour (거칠기와 수직응력에 따른 암석 절리면의 전단거동)

  • Lee, Myoung-Ho;Kim, Jong-Woo;Chang, Kwang-Taek
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.186-196
    • /
    • 2007
  • In this study, direct shear tests were carried out on the 30 rock joint samples in order to investigate the influence of roughness and normal stress on the shear behaviour. Joint roughness profiles were measured by use of 3D laser profiler, and then the samples were equally classified into three individual groups according to the roughness index of rock joints. Peak shear strength, residual shear strength, shear stiffness, dilation angle of rock joints were investigated in condition of five different constant normal load. Peak shear strength was increased as roughness index was increased, and the influence of roughness on strength was found to be more considerable in case of lower normal stress condition. Residual shear strength and shear stiffness were increased as roughness index and normal stress were increased. Finally dilation angle was decreased as normal stress was increased, but it was increased as roughness index was increased in the same normal stress condition.

The Engineering Properties of Shear Strength of Rock Joints in Korea (국내에 분포하는 주요 암석의 절리면 전단강도에 대한 공학적 성질)

  • 김대복;이상근;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.301-315
    • /
    • 2001
  • 본 연구에서는 최근 5년간 국내 각 지역에서 채취한 802개의 절리면 시료에 대하여 전단시험을 실시하여 얻은 결과를 이용하여, 절리면의 여러 공학적 성질들을 조사, 연구하였다. 절리면 전단시험에서 얻어진 최대마찰각 및 잔류마찰각을 지체구조별, 암종별로 분류하고 통계적으로 구하였으며, Barton의 전단강도식의 입력변수인 JRC, JCS를 측정하고 Barton식의 적용성에 대해서도 검토하였다. 그 결과 설계의 기초자료로 활용할 수 있는 지역별, 주요 암종별 최대마찰각, 잔류마찰각을 제시하였다. 또한, JRC, JCS, 수직응력에 따른 마찰각과 전단강성 및 팽창각의 변화를 분석하였다. 마지막으로, Barton의 식에서 구한 이론적 전단강도와 이 실험에서 얻어진 전단강도를 비교한 결과, Barton의 경험식은 높은 상관도로 암석 절리면 전단강도를 예측할 수 있음을 확인하였다.

  • PDF

Anisotropic Shear Strength of Artificially Fractured Rock Joints Under Low Normal Stress (낮은 수직응력 하에서 인공 절리면의 전단 이방성에 관한 연구)

  • 곽정열;이상은;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.169-179
    • /
    • 2003
  • Anisotropic shear strength of rock joints is studied based on the artificially fractured specimens using experimental and analytical methods. Series of direct shear tests are performed to obtain the strength, stiffness and friction angle of joints under various low normal stresses and shearing directions. The results of shear strength and stiffness show anisotropic value according to shearing direction under low normal stress specially less than 2.45 MPa. But, the effect of joint roughness on strength decreases with increasing normal stress. To estimate more effectively the peak shear strength under low normal stress, the modified Barton's equation is suggested.

Calculation Method for Nominal Area of Rock Core Specimen During Direct Shear Test (암석코어시편의 절리면 직접전단시험을 위한 겉보기 면적 계산방법)

  • Kang, Hoon;Park, Jung-Wook;Park, Chan;Oh, Tae-Min;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.551-558
    • /
    • 2020
  • This note presents the calculation of nominal area for rock core specimen under direct shear testing condition. The initial nominal area was assumed as ellipsoid, and the equations for calculating the nominal area are derived. The normalized shear displacement and normalized nominal area have an identical relationship regardless of the ellipsoid shape. New testing constants and the generalized method were suggested to calculate the decrease of the nominal area. The method was applied to calculate the direct shear testing data and the changes of result were discussed.

Laboratory Study of the Shear Characteristics of Fault Gouges Around Mt. Gumjung, Busan (부산 금정산일대에 분포하는 단층비지의 전단특성에 관한 실험적 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.113-121
    • /
    • 2012
  • The mechanical characteristics of a fault gouge from near Mt. Kumjung in Kumjung-Gu, Busan, were estimated from laboratory tests on different joint models. Fault gouge samples and joint samples in biotite granite were obtained from boreholes in the study area that had penetrated small faults associated with the Dongnae and Yangsan faults. XRD and SEM analyses revealed that for the fault gouge consists of several clay minerals with tabular structure (kaolinite, montmorillonite, illite, sericite), which could cause the considerable reduction of shear strength when wet. The shear strength of the fault gouge was obtained from direct shear tests of the fault gouge itself and from direct shear tests of several natural/artificial joint surfaces coated with fault gouge. The results indicate that the reduction of shear strength is more abrupt for the joint surfaces coated with fault gouge compared with uncoated joint surfaces, and that the friction angle of the fault gouge between joint surfaces is much lower than the internal friction angle of the fault gouge itself. Fault gouges in contact with rock, therefore, could have a stronger negative effect on the stability of structures in rock masses than the fault gouge itself.

Study on the Estimation Model of Shear Strength at Rock Joint and Its Influence Factor (암석절리면 전단강도 예측모델 및 영향요소에 관한 연구)

  • Son, Moorak
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.5-12
    • /
    • 2023
  • This study investigates the existing models for estimating the shear strength of rock joints, presents related problems, and introduces a newly proposed model to overcome the problems. The results of many experimental tests show that the shear strength of a rock joint depends on many complex factors, including asperity angle, compressive strength, applied normal stress, friction angle, asperity cohesive strength, and progressive damage of asperities. However, the existing models do not account for these factors enough. To overcome these problems, Son (2020) developed a new model to estimate the shear strength of rock joints and confirmed its reliability by comparing with experimental results and existing models. In this paper, the developed model was used to investigate the various factors that affect the joint shear strength, and the results were compared and analyzed. Through this study, the factors that affect the shear strength of the rock joint could be identified in more detail.

Relationship between shear behavior characteristics and mechanical parameters of fractures (절리면에서의 전단거동 특성과 역학적 파라미터들 간의 상관성)

  • 이종욱;이찬구;황신일;장천중;최원학
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.1-20
    • /
    • 1993
  • In this study, laboratory direct shear tests on 37 core specimens of gneiss were performed to examine the characteristics of shear behavior on fractures by using a portable direct shear box. The multi-stage shear testing method was used and normal stress applied to specimens ranges from 5.60 to $25.67kg/\textrm{cm}^2$. On the basis of test results, the empirical equations for the shear strength on fractures were suggested. The methanical parameters that can influence the shear behavior were derived and compared between each parameter. The values of shear stiffness have a trend showing rapid increase with the increase of normal stress and joint roughness coeffident, and the average value of secant shear stiffness for all specimens is about $110.68kg/\textrm{cm}^3$ under the range of normal stress applied in this test In addition, the relationship between the length of specimen and shear stiffness is inversely correlated due to the size effect. Therefore, even the specimens with the same joint roughness coeffident show the trend of decreasing shear stiffness in case of the specimens being the longer length.

  • PDF

Case Study on the Shear Characteristics of Limestone Joint Surfaces by Direct Shear Tests (직접전단시험에 의한 석회암 자연절리면의 전단특성 분석사례)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.292-304
    • /
    • 2019
  • Limestone joint surfaces with smooth roughness were experimented by means of both the individual direct shear tests based on the KSRM standard test method and the multi-stage direct shear test to apply the stepwise vertical stresses. Changes in the roughness of the joint surfaces before and after the shear tests were examined and the difference between the two kinds of tests mentioned above was analyzed. In both tests, the shear resistance increased as the joint roughness increased and the maximum shear stress required for shearing the joint surface increased as the vertical stress increased. The peak friction angle obtained by the multi-stage direct shear tests was only 63% of that obtained by the individual direct shear tests. In the multi-stage direct shear test, the initial engagement of the concave-convex parts changes frequently during stepwise shearing process, which deforms the original roughness of a joint surface. Accordingly, the individual direct shear test is thought to be more effective when obtaining the friction angle of the rock joint surfaces. Limestone joint surfaces with smooth roughness of JRC value 4~8 were found to have peak friction angle of $47^{\circ}$, residual friction angle of $38^{\circ}$ and cohesion of 37 kPa.

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.