• Title/Summary/Keyword: 절대선량

Search Result 73, Processing Time 0.032 seconds

최적화알고리듬을 이용한 세기변조방사선치료의 정량적인 정도관리

  • Park, Dong-Hyun;Park, Dal;Park, Sung-Yong;Kim, Tae-Hyun;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.35-35
    • /
    • 2003
  • 목적 : 세기변조방사선치료의 정도관리 중 선량 분포의 비교에 관한 새로운 정량적인 방법을 제시하였다. 이 과정 중에서 선량의 기울기가 큰 영역에서의 문제점을 해결하기 위하여 최적화 알고리듬을 사용하였다. 대상 및 방법 : 필름을 통해 측정된 선량분포와 컴퓨터를 통해 구해진 선량분포를 각각 5mm 간격과 lmm 간격의 해상도로 컴퓨터를 이용해 2 차원 선량분포로 구현한다. 그 후 두 선량분포사이의 차이를 각 선량분 포의 원점을 일치시킨 후 구해낸다. 이때 일반적으로 두 선량분포 사이의 차이는 선량의 기울기가 큰 영역에서 상당히 크게 나타나게 되는데 이것은 측정 장비의 원점을 구하는 과정에서 발생되는 이차원 상의 미세한 원점의 불일치 효과로 선량의 차이가 선량의 기울기가 큰 영역에서 더욱 커지기 때문이다. 이 불일치를 보정하기 위해서, 측정된 선량분포를 계산된 선량분포 위에서 lmm 간격으로 이동시켜가면서 선량의 차이를 계산하여 이 값이 최소가 되는 위치를 확인한다. 이때의 이동치는 가속기가 갖는 허용오차 이내에 있어야 하며 이 값은 2mm로 알려져 있다. 이 과정과는 독립적으로 이온 챔버를 통해 측정된 절대선량 값을 이용하여 두 선량분포 사이를 재 규격화한 뒤 차이를 구하게 되면 우리는 5mm 간격의 2 차원 절대선량 분포 비교를 실험상의 오차들 중 가장 크게 작용하는 원점 오차로 인한 오차를 제거한 뒤 수행한 것과 같은 결과를 얻게 된다. 여기서 계산된 선량분포의 해상도는 장비의 허용오차 보다 항상 작아야 한다. 결과 : 머리와 목에 환부를 갖는 여러 환자들에 대한 선량분포 비교 결과를 통해서, 측정된 선량분포와 계산된 선량분포사이의 허용오차 범위에 대한 일시적 기준을 마련하였다. 이 기준은 물론 더 많은 환자들에 대한 선량분포 비교를 통해 개선되어질 수 있다. 결론 : 측정 장비의 원점 불일치의 보정뿐만 아니라 측정 장비의 회전에 의한 오차 보정, 필름의 광학적 밀도에 관한 보정 등 여러 가지 계통적 오차들에 대한 보정들이 선량분포 확인과정의 이해와 그 기준마련에 도움이 되겠지만 우리가 다룬 원점 불일치에 비해서 상대적으로 무시할 수 있었다. 마지막으로 선량분포 확인의 최종목표인 3 차원 선량분포 확인의 실제 적용을 위한 연구가 최적화 알고리듬을 이용하여 실험 중에 있다.

  • PDF

The Usefulness Assessment of Verifying Daily Output by Using CHECKMATE$^{TM}$ (CHECKMATE$^{TM}$를 이용한 일일 출력 검증의 유용성 평가)

  • Cho, Han-Sang;Nam, Sang-Soo;Park, Hae-Jin;Kim, Mi-Hwa;Park, An-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Purpose: In this study, we tried to check the usefulness of two Linear Accelerators, Clinac IX and 21EX (Varian, Palo Alto, CA), which are equipped in Ajou Medical Center. From 2008 to 2010, we evaluated the error range of Absolute Dose based on the daily output, which was measured by CHECKMATE$^{TM}$ (Sun Nuclear, Melbourne, FL). Materials and Methods: For Daily Q.A, photon beams of two linear accelerators, 21EX and IX (6 MV and 10 MV, respectively) were measured daily by using CHECKMATE$^{TM}$ just before the treatment began, while the absolute dose was measured biweekly by using water phantom. We analyzed the data of measured values from the daily Q.A and the absolute dose from 2008 to 2010 for 21EX, and from 2009 to 2010 for IX. We utilized Excel 2007 (Microsoft, USA) to evaluate Average, Standard deviation and Confidence level of the data. Furthermore, in order to check the measured values of CHECKMATE$^{TM}$ and the significance of absolute dose, each error value was compared and analyzed. Results: During the observation period, the output of two equipment's absolute dose increased in process of time and in both 6 MV and 10 MV, there was a similar increasing trend. In addition, the error rate of the measured value of CHECKMATE$^{TM}$ and the value of absolute dose were under 0.34, which means that there is a similarity relationship between the two measured values. After checking that the measured value of CHECKMATE$^{TM}$ increased, We measured the absolute dose to adjust that. When the error range was close to 2~3%, the number of changing the output was four for 21EX and three for IX. Conclusion: As a result of measuring and analyzing the daily output changes for two years by using CHECKMATE$^{TM}$, we could find that there is a significance between the output which we should obey during Q.A, and the measured value of absolute dose within the error tolerance of 2~3%. Thus, the use of CHECKMATE$^{TM}$ can be positively considered for more efficient and reliable daily output verification of linear accelerator. It can also be a good standard for other medical centers to understand the trends of linear accelerator and to refer to for the correction of each output.

  • PDF

GafChromic Film Dosimetry for Stereotactic Radiosurgery with a Linear Accelerator (선형가속기를 이용한 정위방사선 치료 시 GafChromic Film을 이용한 선량측정)

  • Han Seung Hee;Cho Byung Chul;Park Suk Won;Oh Do Hoon;Park Hee Chul;Bae Hoon Sik
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2003
  • Purpose: The purpose of this study was to evaluate whether a GafChromic film applied to stereotactic radiosurgery with a linear accelerator could provide information on the value for acceptance testing and quality control on the absolute dose and relative dose measurements and/or calculation of treatment planning system. Materials and methods: A spherical acrylic phantom, simulating a patient's head, was constructed from three points. The absolute and relative dose distributions could be measured by inserting a GafChromic film into the phantom. We tested the use of a calibrated GafChromic film (MD-55-2, Nuclear Associate, USA) for measuring the optical density. These measurements were achieved by irradiating the films with a dose of 0-112 Gy employing 6 MV photon. To verify the accuracy of the prescribed dose delivery to a target isocenter using a five arc beams (irradiated in 3 Gy per one beam) setup, calculated by the Linapel planning system the absolute dose and relative dose distribution using a GafChromic film were measured. All the irradiated films were digitized with a Lumiscan 75 laser digitizer and processed with the RIT113 film dosimetry system. Results: We verified the linearity of the Optical Density of a MD-55-2 GafChromic film, and measured the depth dose profile of the beam. The absolute dose delivered to the target was close to the prescribed dose of Linapel within an accuracy for the GafChromic film dosimetry (of $\pm$3$\%$), with a measurement uncertainty of $\pm$1 mm for the 50$\~$90$\%$ isodose lines. Conclusion: Our results have shown that the absolute dose and relative dose distribution curves obtained from a GafChromic film can provide information on the value for acceptance. To conclude the GafChromic flim is a convenient and useful dosimetry tool for linac based radiosurgery.

Analysis of the major factors of influence on the conditions of the Intensity Modulated Radiation Therapy planning optimization in Head and Neck (두경부 세기견조방사선치료계획 최적화 조건에서 주요 인자들의 영향 분석)

  • Kim, Dae Sup;Lee, Woo Seok;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Purpose : To derive the most appropriate factors by considering the effects of the major factors when applied to the optimization algorithm, thereby aiding the effective designing of a ideal treatment plan. Materials and Methods : The eclipse treatment planning system(Eclipse 10.0, Varian, USA) was used in this study. The PBC (Pencil Beam Convolution) algorithm was used for dose calculation, and the DVO (Dose Volume Optimizer 10.0.28) Optimization algorithm was used for intensity modulated radiation therapy. The experimental group consists of patients receiving intensity modulated radiation therapy for the head and neck cancer and dose prescription to two planned target volume was 2.2 Gy and 2.0 Gy simultaneously. Treatment plan was done with inverse dose calculation methods utilizing 6 MV beam and 7 fields. The optimal algorithm parameter of the established plan was selected based on volume dose-priority(Constrain), dose fluence smooth value and the impact of the treatment plan was analyzed according to the variation of each factors. Volume dose-priority determines the reference conditions and the optimization process was carried out under the condition using same ratio, but different absolute values. We evaluated the surrounding normal organs of treatment volume according to the changing conditions of the absolute values of the volume dose-priority. Dose fluence smooth value was applied by simply changing the reference conditions (absolute value) and by changing the related volume dose-priority. The treatment plan was evaluated using Conformal Index, Paddick's Conformal Index, Homogeneity Index and the average dose of each organs. Results : When the volume dose-priority values were directly proportioned by changing the absolute values, the CI values were found to be different. However PCI was $1.299{\pm}0.006$ and HI was $1.095{\pm}0.004$ while D5%/D95% was $1.090{\pm}1.011$. The impact on the prescribed dose were similar. The average dose of parotid gland decreased to 67.4, 50.3, 51.2, 47.1 Gy when the absolute values of the volume dose-priority increased by 40,60,70,90. When the dose smooth strength from each treatment plan was increased, PCI value increased to $1.338{\pm}0.006$. Conclusion : The optimization algorithm was more influenced by the ratio of each condition than the absolute value of volume dose-priority. If the same ratio was maintained, similar treatment plan was established even if the absolute values were different. Volume dose-priority of the treatment volume should be more than 50% of the normal organ volume dose-priority in order to achieve a successful treatment plan. Dose fluence smooth value should increase or decrease proportional to the volume dose-priority. Volume dose-priority is not enough to satisfy the conditions when the absolute value are applied solely.

Quality Assurance for Intensity Modulated Radiation Therapy (세기조절방사선치료(Intensity Modulated Radiation Therapy; IMRT)의 정도보증(Quality Assurance))

  • Cho Byung Chul;Park Suk Won;Oh Do Hoon;Bae Hoonsik
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.275-286
    • /
    • 2001
  • Purpose : To setup procedures of quality assurance (OA) for implementing intensity modulated radiation therapy (IMRT) clinically, report OA procedures peformed for one patient with prostate cancer. Materials and methods : $P^3IMRT$ (ADAC) and linear accelerator (Siemens) with multileaf collimator are used to implement IMRT. At first, the positional accuracy, reproducibility of MLC, and leaf transmission factor were evaluated. RTP commissioning was peformed again to consider small field effect. After RTP recommissioning, a test plan of a C-shaped PTV was made using 9 intensity modulated beams, and the calculated isocenter dose was compared with the measured one in solid water phantom. As a patient-specific IMRT QA, one patient with prostate cancer was planned using 6 beams of total 74 segmented fields. The same beams were used to recalculate dose in a solid water phantom. Dose of these beams were measured with a 0.015 cc micro-ionization chamber, a diode detector, films, and an array detector and compared with calculated one. Results : The positioning accuracy of MLC was about 1 mm, and the reproducibility was around 0.5 mm. For leaf transmission factor for 10 MV photon beams, interleaf leakage was measured $1.9\%$ and midleaf leakage $0.9\%$ relative to $10\times\;cm^2$ open filed. Penumbra measured with film, diode detector, microionization chamber, and conventional 0.125 cc chamber showed that $80\~20\%$ penumbra width measured with a 0.125 cc chamber was 2 mm larger than that of film, which means a 0.125 cc ionization chamber was unacceptable for measuring small field such like 0.5 cm beamlet. After RTP recommissioning, the discrepancy between the measured and calculated dose profile for a small field of $1\times1\;cm^2$ size was less than $2\%$. The isocenter dose of the test plan of C-shaped PTV was measured two times with micro-ionization chamber in solid phantom showed that the errors upto $12\%$ for individual beam, but total dose delivered were agreed with the calculated within $2\%$. The transverse dose distribution measured with EC-L film was agreed with the calculated one in general. The isocenter dose for the patient measured in solid phantom was agreed within $1.5\%$. On-axis dose profiles of each individual beam at the position of the central leaf measured with film and array detector were found that at out-of-the-field region, the calculated dose underestimates about $2\%$, at inside-the-field the measured one was agreed within $3\%$, except some position. Conclusion : It is necessary more tight quality control of MLC for IMRT relative to conventional large field treatment and to develop QA procedures to check intensity pattern more efficiently. At the conclusion, we did setup an appropriate QA procedures for IMRT by a series of verifications including the measurement of absolute dose at the isocenter with a micro-ionization chamber, film dosimetry for verifying intensity pattern, and another measurement with an array detector for comparing off-axis dose profile.

  • PDF

Evaluation of DQA for Tomotherapy using 3D Volumetric Phantom (3차원 체적팬텀을 이용한 토모치료의 Delivery Quality Assurance 평가)

  • Lee, Sang-Uk;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.607-614
    • /
    • 2016
  • The study investigates the necessity of 3 dimensional dose distribution evaluation instead of point dose and 2 dimensional dose distribution evaluation. Treatment plans were generated on the RANDO phantom to measure the precise dose distribution of the treatment site 0.5, 1, 1.5, 2, 2.5, 3 cm with the prescribed dose; 1,200 cGy, 5 fractions. Gamma analysis (3%/3 mm, 2%/2 mm) of dose distribution was evaluated with gafchromic EBT2 film and ArcCHECK phantom. The average error of absolute dose was measured at $0.76{\pm}0.59%$ and $1.37{\pm}0.76%$ in cheese phantom and ArcCHECK phantom respectively. The average passing ratio for 3%/3 mm were $97.72{\pm}0.02%$ and $99.26{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. The average passing ratio for 2%/2 mm were $94.21{\pm}0.02%$ and $93.02{\pm}0.01%$ in gafchromic EBT2 film and ArcCHECK phantom respectively. There was a more accurate dose distribution of 3D volume phantom than cheese phantom in patients DQA using tomotherapy. Therefor it should be evaluated simultaneously 3 dimensional dose evaluation on target and peripheral area in rotational radiotherapy such as tomotherapy.

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF

Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment (자체 제작한 Foxtail Millet Vacuum Cushion의 광자선 피부암 치료 시 유용성 검증)

  • Choi, Shin-Cheol;Lee, Kyung-Jae;Jung, Sung-Min;Oh, Tae-Seong;Park, Jong-Il;Shin, Hyun-Kyo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • Purpose: The sufficiency of skin dose and the reemergence of patient set-up position to the success of skin cancer radiation treatment is a very important element. But the conventional methods to increase the skin dose were used to vacuum cushion, bolus and water tank have several weak points. For this reason, we producted Foxtail Millet Vacuum Cushion and evaluated the efficiency of the Foxtail Millet Vacuum Cushion in skin cancer Radiation treatment. Materials and Methods: We measured absolute dose for 3 materials (Foxtail Millet Vacuum Cushion, bolus and solid water phantom) and compared each dose distribution. We irradiated 6 MV 100 MU photon radiation to every material of 1 cm, 2 cm, 3 cm thickness at three times. We measured absolute dose and compared dose distribution. Finally we inspected the CT simulation and radiation therapy planing using the Foxtail Millet Vacuum Cushion. Results: Absolute dose of Foxtail Millet Vacuum Cushion was similar to absolute dose of bolus and solid water phantom's result in each thickness. it Showed only the difference of 0.1~0.2% between each material. Also the same result in dose distribution comparison. About 97% of the dose distribution was within the margin of error in the prescribed ranges ($100{\pm}3%$), and achieved the enough skin dose (Gross Tumor Volume dose : $100{\pm}5%$) in radiation therapy planing. Conclusion: We evaluated important fact that Foxtail Millet Vacuum Cushion is no shortage of time to replace the soft tissue equivalent material and normal vacuum cushion at the low energy radiation transmittance. Foxtail Millet Vacuum Cushion can simultaneously achieve the enough skin dose in radiation therapy planing with maintaining normal vacuum cushion' function. Therefore as above We think that Foxtail Millet Vacuum Cushion is very useful in skin cancer radiation treatment.

  • PDF