• Title/Summary/Keyword: 전해질막

Search Result 235, Processing Time 0.031 seconds

Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Supercapacitors (Starch-g-PAN 고분자 전해질막 합성 및 플렉서블 고체 슈퍼 캐퍼시터 응용)

  • Min, Hyo Jun;Jung, Joo Hwan;Kang, Miso;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.164-172
    • /
    • 2019
  • In this work, we demonstrate a facile process to prepare an electrolyte membrane for the supercapacitor based on a graft copolymer consisting of starch and poly(acrylonitrile) (PAN). The graft copolymer (starch-g-PAN) was synthesized via free radical polymerization initiated by ceric ions. The starch-g-PAN was dissolved in ionic liquid, i.e. 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA) without any organic solvents at room temperature. The gelation of polymer electrolyte membranes occurred by applying high temperature, i.e. $100^{\circ}C$ for 1 hour. The resultant electrolyte membrane was flexible and thus applied to flexible solid supercapacitors. The performance of the supercapacitor based on starch-g-PAN graft copolymer electrolyte reached 21 F/g at a current density of 0.5 A/g. The cell also showed high cyclic stability with 86% of retention rate within 10,000 cycles. The preparation of starch-g-PAN based polymer electrolyte membrane provides opportunities for facile fabrication of flexible solid supercapacitors with good performance.

Optimization of Operating Parameters for Alkaline Water Electrolysis Using Anion Exchange Membrane (음이온 교환막 알칼리 수전해의 운전 조건 최적화)

  • Jang, Myeong-Je;Won, Mi-So;Lee, Gyu-Hwan;Choe, Seung-Mok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.151-151
    • /
    • 2016
  • 수소는 친환경 에너지원으로 주목 받고 있으며 미래 화석연료의 고갈에 대비할 수 있는 물질이다. 수전해는 natural gas steam reforming 또는 coal gasification 같은 방법에 비해 공해 물질의 방출이 없어 미래지향적인 기술로 간주된다. 저온형 수전해는 크게 알칼리 수전해와 고분자 전해질막 수전해로 구분되며 각각의 기술은 장단점을 가지고 있다. 알칼리 수전해는 비백금계 물질을 촉매로 사용할 수 있는 이점이 있으나 알칼리 용액으로 인한 부식, 높은 과전압에 의한 효율저하 그리고 간헐적인 사용에 적합하지 않다. 고분자 전해질막 수전해는 간헐적인 사용이 용이하고 높은 에너지 밀도를 가지지만 산성분위기로 인한 백금계 촉매를 사용해야 하므로 수소 생산 비용이 증가하게 된다. 본 연구에서는 알칼리 수전해와 고분자 전해질막 수전해 방식의 이점을 최대한 이용하고 단점을 극복하기 위한 방법으로 음이온 교환막(anion exchange membrane, AEM)을 적용한 셀 구조를 소개한다. 본문에서는 AEM 수전해 단위 셀의 구성요소들인 AEM 종류, 가스 확산층의 밀도와 운전조건인 알칼리 수용액 농도, 온도의 조건을 다르게 하여 최상의 구성 요소 조건 및 운전조건을 알아보았다.

  • PDF

Air Pumps for Polymer Electrolyte Membrane Fuel Cells (휴대용 고분자전해질막 연료전지의 산화제 공급을 위한 전기침투 현상 기반의 공기펌프의 개발)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.715-720
    • /
    • 2010
  • We propose an electroosmosis-based air delivery scheme for polymer electrolyte fuel cells and experimentally investigate its feasibility. An electroosmotic pump under a low-frequency AC electric field is used to displace initially a volume of pump working liquids. This working liquid is then pumped into a space enclosed by a flexible membrane and the movement of the membrane delivers air to a fuel cell. We successfully demonstrated the operation of a forced-convection fuel cell using this technique. In this preliminary study, however, the power consumption of the pump exceeds the power generated by the fuel cell. We conclude this paper with a discussion of several ways to reduce the pump-to-fuel cell power ratio.

Study on Polymer Electrolyte Membrane Fuel Cell for UAV Applications (고분자 전해질막 연료전지의 무인항공기 탑재화 연구)

  • Kim, Jin-Cheol;Kim, Sung-Uk;Kim, Dong-Min;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.153-156
    • /
    • 2012
  • The optimization and integration of a fuel cell were performed to improve the performance and reliability of the fuel cell in this paper. To improve the performance of the PEMFC, current and voltage of the fuel cell were measured using an electrical load, and the results was compared and analyzed with the data of a commercial fuel cell. Based on the above results, a controller for a fuel cell UAV applications was designed, and the fuel cell control algorithm was developed to optimize the performance of the fuel cell UAV.

  • PDF

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

Anhydrous Crosslinked Polymer Electrolyte Membranes Based On ABA Triblock Copolymer (ABA 트리블록 공중합체를 이용한 무가습 가교형 고분자 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Lee, Do-Kyoung;Roh, Dong-Kyu;ShuI, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.228-236
    • /
    • 2009
  • ABA type triblock copolymer of poly(hydroxyl ethyl acrylate )-b-polystyrene-b-poly(hydroxyl ethyl acrylate), i.e. PHEA-b-PS-b-PHEA, was synthesized throughatom transfer radical polymerization (ATRP). This block copolymer was thermally crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification between the -OH groups of PHEA in block copolymer and the -COOH groups of IDA. Upon doping with ${H_3}{PO_4}$ to form imidazole-${H_3}{PO_4}$ complexes, the proton conductivity of membranes continuously increased with increasing ${H_3}{PO_4}$ content. The PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ polymer membrane with [HEA]:[IDA]:[${H_3}{PO_4}$]=3:4:4 exhibited a maximum proton conductivity of 0.01 S/cm at $100^{\circ}C$ under anhydrous conditions. Thermal gravimetric analysis (TGA) shows that the PHEA-b-PS-b-PHEA/IDA/${H_3}{PO_4}$ complex membranes were thermally stable up to $350^{\circ}C$, indicating their applicability in fuel cells.

Anhydrous Polymer Electrolyte Membranes Prepared From Polystyrene-b-Poly (hydroxyl ethyl methacrylate) Block Copolymer (Polystyrene-b-Poly(hydroxyl ethyl methacrylate) 블록 공중합체를 이용한 무가습 고분자 전해질막)

  • Kim, Jong-Hak;Seo, Jin-Ah;Lee, Do-Kyung;Roh, Dong-Kyu;Shul, Yong-Gun
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.302-309
    • /
    • 2009
  • A block copolymer of polystyrene-b-poly (hydroxyl ethyl methacrylate), PS-b-PHEMA, was synthesized via atom transfer radical polymerization (ATRP) and crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via esterification of the -OH groups of PHEMA in the block copolymer and the -COOH groups of IDA. Upon doping with $H_3PO_4$ to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased as the content of $H_3PO_4$ increased. In addition, both the tensile strength and the elongation at break increased with IDA content. A proton conductivity of 0.01 S/cm at $100^{\circ}C$ was obtained for the PS-b-PHEMA/IDA/$H_3PO_4$ membrane with [HEMA]:[IDA]:[$H_3PO_4$] = 3:4:4 under anhydrous conditions. All of the PS-b-PHEMA/IDA/$H_3PO_4$ membranes were thermally stable up to $350^{\circ}C$, as revealed by thermal gravimetric analysis (TGA).