• Title/Summary/Keyword: 전해전착

Search Result 80, Processing Time 0.025 seconds

Electrochemical Behavior of Tin and Silver during the Electrorecycling of Pb-free Solder (Sn-Ag-Cu) Waste (폐무연솔더(Sn-Ag-Cu)의 전해재활용 시 주석과 은의 전기화학적 거동 연구)

  • Kim, Min-seuk;Lee, Jae-chun;Kim, Rina;Chung, Kyeong-woo
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.61-72
    • /
    • 2022
  • We investigated the electrochemical behavior of Sn (93.0 %)-Ag (4.06 %)-Cu (0.89 %) during electrolysis of Pb-free solder waste to recover tin and silver. A thin strip of the solder waste produced by high-temperature melting and casting was used as a working electrode to perform electrochemical analysis. During anodic polarization, the current peak of an active region decreased with an increase in the concentration of sulfuric acid used as an electrolyte. This resulted in the electro-dissolution of the working electrode in the electrolyte (1.0 molL-1 sulfuric acid) for a constant current study. The study revealed that the thickening of an anode slime layer at the working surface continuously increased the electrode potential of the working electrode. At 10 mAcm-2, the dissolution reaction continued for 25 h. By contrast, at 50 mAcm-2, a sharp increase in the electrode potential stopped the dissolution in 2.5 h. During dissolution, silver enrichment in the anode slime reached 94.3% in the 1 molL-1 sulfuric acid electrolyte containing a 0.3 molL-1 chlorine ion, which was 12.7% higher than that without chlorine addition. Moreover, the chlorine enhanced the stability of the dissolved tin ions in the electrolyte as well as the current efficiency of tin electro-deposition at the counter electrode.

Electrochemical Oxidation of Pigment Wastewater Using the Tube Type Electrolysis Module System with Recirculation (재순환방식 튜브형 전해모듈시스템을 이용한 안료폐수의 전기화학적 산화)

  • Jeong, Jong Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.411-419
    • /
    • 2016
  • The objective of this study was to evaluate the application possibility of tube type electrolysis module system using recirculation process through removal organic matters and nitrogen in the pigment wastewater. The tube type electrolysis module consisted of a inner rod anode and an outer tube cathode. Material used for anode was titanium electroplated with $RuO_2$. Stainless steel was used for cathode. It was observed that the pollutant removal efficiency was increased according to the decrease of flowrate and increase of current density. When the retention time in tube type electrolysis module system was 180 min, chlorate concentration was 382.4~519.6 mg/L. The chlorate production was one of the major factors in electrochemical oxidation of tube type electrolysis module system using recirculation process used in this research. The pollutant removal efficiencies from the bench scale tube type electrolysis module system using recirculation operated under the electric charge of $4,500C/dm^2$ showed the $COD_{Mn}$ 89.6%, $COD_{Cr}$ 67.8%, T-N 96.8%, and Color 74.2%, respectively and energy consumption was $5.18kWh/m^3$.

Recovery of Silicon from Silicon Sludge by Electrolysis (실리콘 슬러지로부터 실리콘의 전해회수(電解回收))

  • Park, Jesik;Jang, Hee Dong;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

A Basic Study on Non-aqueous Electrolysis of Neodymium for Room-temperature Metallurgy (상온제련을 위한 네오디뮴의 비수계 전해 기초연구)

  • Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.29-35
    • /
    • 2018
  • In this study, the electrochemical redox behavior of neodymium in non-aqueous electrolytes was investigated to confirm the possibility of neodymium metallurgy at room temperature. The non-aqueous electrolytes include ionic liquids such as $[C_4mim]PF_6$, $[C_4mim]Cl$, and $[P_{66614}]PF_6$, ethanol which are highly soluble in neodymium salts, and mixed electrolytes based on carbonate with highly electrochemical stability. The electrochemical redox properties of neodymium were better than those of other electrolytes in the case of the mixed electrolyte based on ethylene carbonate (EC)/di-ethylene carbonate (DEC). Ethanol was added to improve the physical properties of the mixed electrolyte. Thorough the analysis about ionic conductivity of EC/DEC ratio, ethanol content and $NdCl_3$ concentration, the best electrolyte composition was 50 vol% content of ethanol and 0.5 M of $NdCl_3$. Using cyclic voltametry and linear sweep voltametry, a current peak estimated at -3.8 V (vs. Pt-QRE) was observed as a limiting current of neodymium reduction. Potentiostatic electrolysis for 18 hours at room temperature at -6 V (vs. Pt-QRE) confirmed that metallic neodymium was electrodeposited.

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

Electrochemical preparation of CdS nanowire arrays in anodic alumina templates (양극산화된 알루미나 주형 안에 CdS 나노선 배열의 전기화학적 제조)

  • 윤천호;정영리
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.57-60
    • /
    • 2001
  • We prepared uniform CdS nanowire arrays ways with lengths up to 5 $\mu\textrm{m}$ and diameters as small as 20 nm by electrochemically depositing the semiconductor directly into the pores of anodic alumina films from an electrolyte containing $CdCl_2$ and S in dimethyl sulfoxide. The nanowire arrays were characterized by scanning electron microscopy and X-ray diffraction. The deposited materials are composed mainly of hexagonal CdS with (100) preferential orientation.

  • PDF

Effect of Pulse and Pulse-Reverse Current on Surface Morphology and Resistivity of Electrodeposited Copper (정펄스 및 역펄스 방법을 이용하여 구리 전해도금 시 전착층의 표면 형상과 고유저항에 미치는 효과)

  • Woo, Tae-Gyu;Park, Il-Song;Seol, Kyeong-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.56-59
    • /
    • 2007
  • Recently, requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. In this study, we evaluated the surface morphology, crystal phase ana surface roughness of the copper film electrodeposited by pulse method without using additives. Homogeneous and dense copper crystals were formed on the titanium substrate, and the optimum condition was 25% duty cycle. Moreover, the surface roughness(Ra), $0.295{\mu}m$, is the smallest value in this condition. It is thought that this copper foil is good for electromigration inhibition due to the preferential crystal growth of Cu (111)

Anodic Oxidation of Iodate to Periodate by Lead Peroxide Anode (전착과산화납양극에 의한 옥소산염 전해산화)

  • Chong Woo Nam;Hak Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.324-329
    • /
    • 1971
  • In order to evaluate the mechanism of electrolytic oxidation of iodate and to determine the optimum conditions for the electrolysis, studies were made using the cells without diaphragm and the lead peroxide anode. Results are summarized as followings: 1) Current density vs. anode potential curve by lead peroxide electrode had the different limiting current densities from platinum electrode and was more positive than platinum electrode. 2) Additions of potassium bichromate in the electrolyte contribute to maintain high current efficiency. 3) In the acid and alkaline regions, the current efficiencies decreased by reduction of iodate and discharge of hydroxyl ion, so maximum current efficiency was shown at pH 7. 4) Higher current density lowered the current efficiency in the region of 60-80% conversion of iodate. 5) Influence of the conversion on current efficiency in the region of 60-80% conversion of iodate.

  • PDF

The Composition and the Microstructure of Pulse current electrodeposits of SilverTin alloy (파형전류전해에 의한 은-주석합금 전착층의 조성 및 현미경조직)

  • 예길촌;김용웅;김진수
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.5
    • /
    • pp.245-254
    • /
    • 1993
  • The effects of pulse current electrolysis conditions on the composition and the microstructure of Ag-Sn alloy were studied by using a pyrophosphate bath. Both cathode current efficiency and throwing power of alloy deposits formed under pulse plating conditions, decreased with increasing mean current density, and lower than those under D.C. electrolysis condition. Tin content of Ag-Sn alloy decreased noticebly with in-creasing the mean current density, while it increased with the increase of On-time from 1 to 10 ms. The pre-ferred orientation of Ag-Sn alloy changed with increasing cathode overpotential in the sequence of (100)longrightarrow(100)+(111)longrightarrow(111) at $20^{\circ}C$ and (110)longrightarrow(111)longrightarrow(111)+(100) at $30^{\circ}C$. The effective crystal grain size of the alloy was decreased by decreasing temperature from $30^{\circ}C$ to $20^{\circ}C$ and the surface structure of them was related to the preferred orientation.

  • PDF

Effect of pH on the crystal orientation and photoelectrochemical property of electrodeposited Cu2O films (pH에 따른 p-type Cu2O 박막 결정구조 제어 및 광특성 변화 연구)

  • Kim, Mi-Seong;Yun, Sang-Hwa;Im, Dong-Chan;Yu, Bong-Yeong;Kim, In-Su;Lee, Gyu-Hwan;Im, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.317-317
    • /
    • 2012
  • 본 연구는 전착법으로 형성된 $Cu_2O$ 박막의 광특성 변화를 고찰한 것이다. 0.3M $CuSO_4$과 4M Lactic acid에 4M NaOH로 전해액의 pH를 조절하여 $Cu_2O$ 박막의 결정성 및 극성을 조절하였다. $Cu_2O$ 박막의 결정성 및 극성에 따른 광특성을 고찰한 결과, 무극성인 (111)면에서 광특성이 우수함을 확인하였다. 하지만, 측정시간의 증가에 따라 표면에 Cu 금속이 형성되어 광전류가 감소함을 확인 할 수 있었다.

  • PDF