Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2017.15.4.321

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration  

Kim, Young Min (Chungnam National University)
Kim, Dae Young (Chungnam National University)
Yoo, Bung Uk (Chungnam National University)
Jang, Jun Hyuk (Korea Atomic Energy Research Institute)
Lee, Sung Jai (Korea Atomic Energy Research Institute)
Park, Sung Bin (Korea Atomic Energy Research Institute)
Lee, Han soo (Korea Atomic Energy Research Institute)
Lee, Jong Hyeon (Chungnam National University)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.15, no.4, 2017 , pp. 321-332 More about this Journal
Abstract
In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.
Keywords
Electrorefining; High-throughput; Uranium; COMSOL Multiphysics; Tertiary current distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B.K. Srihari, S. Agarwal, B.P. Reddy, P.M. Satya Sai, B. Muralidharan, and K. Nagarajan, "Modeling the Molten Salt Electrorefining Process for Spent Metal Fuel using COMSOL", Sep. Sci. Technol., 50, 2276-2283 (2015).
2 COMSOL Inc., "COMSOL Electrodeposition Module Users Guide", COMSOL Multiphysics V 5.3 (2017).
3 B.G. Park, A Time-dependent Simulation of Molten Salt Electrolysis for Nuclear Wastes Transmutation, Ph.D. Thesis, Seoul National University (1999).
4 R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, and S. Trasatti, "Defining the transfer coefficient in electrochemistry : An assessment (IUPAC Technical Report)", Pure Appl. Chem., 86(2), 245-258 (2014).   DOI
5 C. Kwon, J. Kang, W. Kang, D. Kwak, and B. Han, "First principles study of the thermodynamic and kinetic properties of U in an electrorefining system using molybdenum cathode and LiCl-KCl eutectic molten salt", Electrochim. Acta., 195, 216-222 (2016).   DOI
6 K.H. Lim, S. Park, and J.I. Yun, "Study on exchange current density and transfer coefficient of uranium in LiCl-KCl molten salt", J. Electrochem. Soc., 162(140), E334-E337 (2015).   DOI
7 D.R. Lide, "Handbook of Chemistry and Physics", 84th ed., CRC Press (2003).
8 I.S. Kim, C.S. Seo, H.S. Shin, Y.S. Hwang, and S.W. Park, "Characteristics of reduced metal from spent oxide fuel by lithium", J. Nucl. Fuel Cycle Waste Technol., 35(4), 309-317 (2003).
9 S.H. Kim, S.B. Park, S.J. Lee, J.G. Kim, H.S. Lee, and J.H. Lee, "Computer-assisted design and experimental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model", Nucl. Eng. Des., 257, 12-20 (2013).   DOI
10 H.S. Lee, G.I. Park, J.W. Lee, K.H. Kang, J.M. Hur, J.G. Kim, S.W. Paek, I.T. Kim, and I.J. Cho, "Current status of pyroprocessing development at KAERI", Sci. Technol. Nucl. Install., 2013, 1-11 (2013).
11 B.U. Yoo, S.H. Kim, S.B. Park, S.J. Lee, J.H. Jang, S.W. Paek, H.S. Lee, and J.H. Lee, "Numerical analysis and experimental validation of planar electrorefiner for spent nuclear fuel treatment using a tertiary model", J. Nucl. Sci. Technol., 53, 2079-2089 (2015).
12 S. Seo, S. Choi, and B.G. Park, "Transient modeling of spent nuclear fuel electrorefining with liquid metal electrode", J. Nucl. Mater., 491, 115-125 (2017).   DOI
13 J. Zhang, "Kinetic model for electrorefining, part I : Model development and validation", Prog. Nucl. Energy, 70, 279-286 (2014).
14 T. Kobayashi and M. Tokiwai, "Development of TRAIL, a simulation code for the molten salt electrorefining of spent nuclear fiuel", J. Alloys. Compd., 197(1), 7-16 (1993).   DOI
15 B.G. Park and I.S. Hwang, "Simulation of Electrorefining Process Using Time-dependent Multi-component Electrochemical Model :REFIN", Proc. of the Korean Nuclear Society autumn meeting, Seoul, Republic of Korea (1999).
16 Z. Tomczuk, J.P. Ackerman, R.D. Wolson, and W.E. Miller, "Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel", J. Electrochem. Soc. 139, 3523-3528 (1992).   DOI