DOI QR코드

DOI QR Code

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration

고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증

  • Received : 2017.09.29
  • Accepted : 2017.11.03
  • Published : 2017.12.30

Abstract

In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.

전극 구성에 따른 고효율 전해정련공정의 일반적인 모델을 구축하기 위하여, 상미분방정식 인터페이스를 갖는 COMSOL Multiphysics V5.3 전착 모듈을 사용하여 수치해석을 실시하였다. 구축된 모델은 한국원자력연구원에서 제작한 실험실 규모 (1kg 우라늄/day 규모) 다중배열전극 전해정련장치를 사용해 전극 간 거리, 전극 배열을 변수로 하여 실시한 실험의 전류밀도-전위 곡선과 비교하였다. 공정온도는 $500^{\circ}C$이다. 용융염은 3wt% $UCl_3$가 포함된 LiCl-KCl 공융염을 사용하였다. 검증된 모델을 이용하여 전류밀도-셀전위 곡선을 계산한 결과 전극 간 거리가 가까울수록, 전극 배열은 양극/음극 면적비가 증가할수록 셀 전위가 낮아져 전해정련장치의 우라늄 처리효율을 향상시킬 수 있다는 것을 확인하였다. 이러한 접근은 고출력 사용후핵연료 전해정련기의 안전설계를 위한 데이터베이스 구축에 유용할 것이다.

Keywords

References

  1. I.S. Kim, C.S. Seo, H.S. Shin, Y.S. Hwang, and S.W. Park, "Characteristics of reduced metal from spent oxide fuel by lithium", J. Nucl. Fuel Cycle Waste Technol., 35(4), 309-317 (2003).
  2. H.S. Lee, G.I. Park, J.W. Lee, K.H. Kang, J.M. Hur, J.G. Kim, S.W. Paek, I.T. Kim, and I.J. Cho, "Current status of pyroprocessing development at KAERI", Sci. Technol. Nucl. Install., 2013, 1-11 (2013).
  3. S.H. Kim, S.B. Park, S.J. Lee, J.G. Kim, H.S. Lee, and J.H. Lee, "Computer-assisted design and experimental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model", Nucl. Eng. Des., 257, 12-20 (2013). https://doi.org/10.1016/j.nucengdes.2013.01.009
  4. B.U. Yoo, S.H. Kim, S.B. Park, S.J. Lee, J.H. Jang, S.W. Paek, H.S. Lee, and J.H. Lee, "Numerical analysis and experimental validation of planar electrorefiner for spent nuclear fuel treatment using a tertiary model", J. Nucl. Sci. Technol., 53, 2079-2089 (2015).
  5. S. Seo, S. Choi, and B.G. Park, "Transient modeling of spent nuclear fuel electrorefining with liquid metal electrode", J. Nucl. Mater., 491, 115-125 (2017). https://doi.org/10.1016/j.jnucmat.2017.04.053
  6. J. Zhang, "Kinetic model for electrorefining, part I : Model development and validation", Prog. Nucl. Energy, 70, 279-286 (2014).
  7. T. Kobayashi and M. Tokiwai, "Development of TRAIL, a simulation code for the molten salt electrorefining of spent nuclear fiuel", J. Alloys. Compd., 197(1), 7-16 (1993). https://doi.org/10.1016/0925-8388(93)90610-Y
  8. B.G. Park and I.S. Hwang, "Simulation of Electrorefining Process Using Time-dependent Multi-component Electrochemical Model :REFIN", Proc. of the Korean Nuclear Society autumn meeting, Seoul, Republic of Korea (1999).
  9. Z. Tomczuk, J.P. Ackerman, R.D. Wolson, and W.E. Miller, "Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel", J. Electrochem. Soc. 139, 3523-3528 (1992). https://doi.org/10.1149/1.2069109
  10. B.K. Srihari, S. Agarwal, B.P. Reddy, P.M. Satya Sai, B. Muralidharan, and K. Nagarajan, "Modeling the Molten Salt Electrorefining Process for Spent Metal Fuel using COMSOL", Sep. Sci. Technol., 50, 2276-2283 (2015).
  11. COMSOL Inc., "COMSOL Electrodeposition Module Users Guide", COMSOL Multiphysics V 5.3 (2017).
  12. B.G. Park, A Time-dependent Simulation of Molten Salt Electrolysis for Nuclear Wastes Transmutation, Ph.D. Thesis, Seoul National University (1999).
  13. R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, and S. Trasatti, "Defining the transfer coefficient in electrochemistry : An assessment (IUPAC Technical Report)", Pure Appl. Chem., 86(2), 245-258 (2014). https://doi.org/10.1515/pac-2014-5026
  14. C. Kwon, J. Kang, W. Kang, D. Kwak, and B. Han, "First principles study of the thermodynamic and kinetic properties of U in an electrorefining system using molybdenum cathode and LiCl-KCl eutectic molten salt", Electrochim. Acta., 195, 216-222 (2016). https://doi.org/10.1016/j.electacta.2016.02.123
  15. K.H. Lim, S. Park, and J.I. Yun, "Study on exchange current density and transfer coefficient of uranium in LiCl-KCl molten salt", J. Electrochem. Soc., 162(140), E334-E337 (2015). https://doi.org/10.1149/2.0571514jes
  16. D.R. Lide, "Handbook of Chemistry and Physics", 84th ed., CRC Press (2003).