• Title/Summary/Keyword: 전투효과분석

Search Result 111, Processing Time 0.026 seconds

Agent-based Modeling and Analysis of Tactical Reconnaissance Behavior with Manned and Unmanned Vehicles (에이전트 기반 유·무인 수색정찰 전술행위 모델링 및 분석)

  • Kim, Ju Youn;Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.47-60
    • /
    • 2018
  • Today's unmanned technology, which is being used in various industries, is expected to be able to make autonomous judgements as autonomous technology matures, in the long run aspects. In order to improve the usability of unmanned system in the military field, it is necessary to develop a technique for systematically and quantitatively analyzing the efficiency and effectiveness of the unmanned system by means of a substitute for the tasks performed by humans. In this paper, we propose the method of representing rule-based tactical behavior and modeling manned and unmanned reconnaissance agents that can effectively analyze the path alternatives which is required for the future armored cavalry to establish a reconnaissance mission plan. First, we model the unmanned ground vehicle, small tactical vehicle, and combatant as an agent concept. Next, we implement the proposed agent behavior rules, e.g., maneuver, detection, route determination, and combatant's dismount point selection, by NetLogo. Considering the conditions of maneuver, enemy threat elements, reconnaissance assets, appropriate routes are automatically selected on the operation area. It is expected that it will be useful in analyzing unmanned ground system effects by calculating reconnaissance conducted area, time, and combat contribution ratio on the route.

Application of Multi-agent Based Simulation for Improving the Credibility of Combat Effectiveness Analysis (전투효과분석 신뢰성 향상을 위한 다중에이전트 시뮬레이션 적용방안)

  • Lee, Jaeyeong;Shin, Sunwoo;Kim, Chongman;Shin, Seungjung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.107-114
    • /
    • 2017
  • In general, credibility for some analysis results is very important to most decision makers. Especially, it is even more critical for military commander to choose the best course of action by using the simulation results when he want to decide to allocate his available weapon system assets. Therefore, improving the credibility of simulation output is one of the key issues in military research fields. In this paper, we proposed a new simulation framework to improve the credibility of weapon's effectiveness analysis results. Multi-agent based simulation tool is applied and compare current process to the proposed framework. We also showed an example case when a communication repeaters are installed to expand the commanding area scope. The example clearly tells why this new simulation framework is more efficient and improve the credibility of simulation results.

A study on Deep Operations Effect Analysis for Realization of Simultaneous Offense-Defence Integrated Operations (공방동시통합작전 구현을 위한 종심작전 효과분석 연구)

  • Cho, Jung Keun;Yoo, Byung Joo;Han, Do Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2021
  • Ground Component Command (GCC) has been developing operational planning and execution systems to implement "Decisive Integrated Operations", which is the concept of ground operations execution, and achieved remarkable results. In particular, "Simultaneous Offense-Defense Integrated Operations" is developed mainly to neutralize enemies in deep areas and develop favorable conditions for the allies early by simultaneously attacking and defending from the beginning of the war. On the other hand, it is limited to providing scientific and reasonable support for the commander's decision-making process because analyzing the effects of the deep operation with existing M&S systems is impossible. This study developed a model for analyzing the effects of deep operations that can be used in the KJCCS. Previous research was conducted on the effects of surveillance, physical strike, and non-physical strike, which are components of deep operations to find the characteristics and limitations and suggest a research direction. A methodology for analyzing the effects of deep operations reflecting the interactions of components using data was then developed by the GCC, and input data for each field was calculated through combat experiments and a literature review. Finally, the Deep operations Effect CAlculating Model(DECAM) was developed and distributed to the GCC and Corps battle staff during the ROK-US Combined Exercise. Through this study, the effectiveness of the methodology and the developed model were confirmed and contribute to the development of the GCC and Corps' abilities to perform deep operations.

Collaborative Visualization of Warfare Simulation using a Commercial Game Engine (상업용 게임 엔진을 활용한 전투 시뮬레이션 결과의 협업 가시화)

  • Kim, Hyungki;Kim, Junghoon;Kang, Yuna;Shin, Suchul;Kim, Imkyu;Han, Soonhung
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • The needs for reusable 3D visualization tool has been being raised in various industries. Especially in the defense modeling and simulation (M&S) domain, there are abundant researches about reusable and interoperable visualization system, since it has a critical role to the efficient decision making by offering diverse validation and analyzing processes. To facilitate the effectiveness, states-of-the-arts M&S systems are applying VR (Virtual Reality) or AR (Augmented Reality) technologies. To reduce the work burden authors design a collaborative visualization environment based on a commercial game engine Unity3D. We define the requirements of the warfare simulation by analyzing pros and cons of existing tools and engines such as SIMDIS or Vega, and apply functionalities of the commercial game engine to satisfy the requirements. A prototype has been implemented as the collaborative visualization environment of iCAVE at KAIST, which is a facility for immersive virtual environment. The facility is intraoperative with smart devices.

Capabilities Required for Underground Facility Operations in Korean Megacities (한국 메가시티 지하시설 작전에 요구되는 능력)

  • Jun Hak Sim;Seung Jin Jo;Jun Woo Kim;Ji Woong Choi;Won Jun Choi;Sun Il Yang;Sang Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.267-272
    • /
    • 2024
  • Recently, major advanced countries are fostering megacities through policy for reasons such as solving population problems, political and economic issues, and strengthening national competitiveness. The trend of change is accelerating. In Korea, following Seoul and Gyeonggi, mega city policies are being promoted in Busan, Ulsan, Gyeongnam, Daegu and Gyeongbuk, Gwangju and Jeonnam, and Daejeon, Sejong, South Chungcheong and North Chungcheong areas. Due to this urbanization phenomenon, military experts predict that the future battlefield environment will be space or a large city (mega city). From this perspective, Korea will not be able to effectively respond to the threats facing megacities if it does not prepare in advance. Therefore, underground facility operation capabilities optimized for the huge scale of the mega city and the characteristics of the underground operational environment are required. Against this background, the characteristics of the underground operational environment of mega cities and cases of preparation for underground facility operations in advanced military countries such as the United States and Israel were analyzed. Based on this, the capabilities required for underground facility operations suitable for the underground operational environment within Korean megacities are developed from an idea perspective to military organization and combat system, securing special equipment and materials to ensure combatant survival, developing small unit combat techniques, and establishing a training system. It was presented with priority given to.

Modeling and Simulation for Effectiveness Analysis of Anti-Ballistic Warfare in Naval Vessels (함정의 대탄도탄전 효과도 분석을 위한 모델링 및 시뮬레이션)

  • Jang Won Bae;GuenHo Lee ;Hyungho Na ;Il-Chul Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.55-66
    • /
    • 2023
  • In recent years, naval vessels have been developed to fulfill a variety of missions by being equipped with various cutting-edge equipment and ICT technologies. One of the main missions of Korean naval vessels is anti-ballistic missile warfare to defend key units and areas against the growing threat of ballistic missiles. Because the process of detection and interception is too complex and the cost of failure is much high, a lot of preparation is required to effectively conduct anti-ballistic missile warfare. This paper describes the development of a simulation model of anti-ballistic missile warfare with combat systems and equipment to be installed on future naval vessels. In particular, the DEVS formalism providing a modular and hierarchical modeling manner was applied to the simulation model, which can be utilized to efficiently represent various anti-ballistic missile warfare situations. In the simulation results presented, experiments were conducted to analyze the effectiveness of the model for effective detection resource management in anti-ballistic missile warfare. This study is expected to be utilized as a variety of analysis tools necessary to determine the optimal deployment and configuration of combat resources and operational tactics required for effective anti-ballistic missile warfare of ships in the future.

A Study on the Standardization of System Support Software in the Combat Management System

  • Heo, Young-Dong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.147-155
    • /
    • 2020
  • System support software is one of the software that makes up ship combat management system and has the characteristics of being mounted in the combat management systems of all ships but with little functional change. However, despite these characteristics, software modifications due to equipment, etc. are inevitable in the application of new ships. Modification of software causes software reliability testing which is a key factor in increasing development costs. In this paper, the structure of the existing system support software was analyzed to identify and supplement the code change factors, and the system support standardization architecture was designed. The feature model elicited common and variable elements of system support software, and applied white-box reuse to improve software design. In addition, the results of comparing existing system support software with the new architecture in terms of development elements and time to perform reliability test were presented to verify the effectiveness of the new one.

A Study on the Initial Design Method for an Effective Acquisition of Future Ground Combat Vehicles (미래지상전투차량의 효과적 획득을 위한 초기설계기법에 관한 연구)

  • Kim, Hee-young;Kwon, Seung Man;Lee, Kyu Noh
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.41-49
    • /
    • 2017
  • In the acquisition program, the conceptual design is the most important step toward specifying the military objectives, establishing requirements and determining future developmental directions, of a target system. However, if both the requirements and directions are incorrectly set due to the lack of development experiences and literature backgrounds in the target systems, such as future ground combat vehicles, it may become a major risk in the future design phases and the entire acquisition program. In order to correct these errors in the future phases, time, effort and cost are required. Therefore, it is necessary to reduce the errors that occur in the initial stages to effectively acquire the future ground combat vehicles. This paper describes the initial design method for verifying the requirements and the developmental directions and estimating the system performance at the conceptual design through the system-level physical modeling and simulation (M&S) and the target system performance analysis. The system-level physical M&S use cutting-edge design tools, model-based designs and geometric-based designs. The system performance estimation is driven from the results of the system-level physical M&S and the specialized system analysis software.

Reinforcing Method for the Protective Capacities of Dispersal and Combat Facilities using Logistic Regression (로지스틱 회귀모형을 활용한 소산 및 전투시설의 방호성능 보강방안 연구)

  • Park, Young Jun;Park, Sangjin;Yu, Yeong-Jin;Kim, Taehui;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • This study provides the numerical model to assess retrofit and strengthen levels in the dispersal and combat facilities. First of all, it is verified that direct-hitting projectiles are more destructive to the structures rather than close-falling bombs with explosion tests. The protective capacity of dispersal and combat facilities, which are modeled with soil uncertainty and structural field data, is analyzed through finite element method. With structural survivability and facility data, the logistic regression model is drawn. This model could be used to determine the level of the retrofit and strengthen in the dispersal and combat facilities of contact areas. For more reliable model, it could be better to identify more significant factors and adapt non-linear model. In addition, for adapting this model on the spot, appropriate strengthen levels should be determined by hands on staffs associated with military facilities.

Joint Analysis of Combat Power and Communication System via Interoperation of War Game Simulator with Communication Network Simulator (워게임 모델과 통신 모델의 연동을 통한 전투력 및 통신시스템 요구 성능의 상호 분석)

  • Kim, Tag Gon;Kim, Deok Su;Sung, Changho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.993-1003
    • /
    • 2012
  • This paper presents a method for joint analysis of combat power and communication system performance via interoperation of a war game simulator and a communication network simulator using HLA/RTI. Effectiveness analysis of combat power has been performed by war game simulation with consideration of communication effects simulated by the network simulator. Performance analysis of a communication system has been performed by network simulation with computer forces generated by the war game simulator. Survivability of the red force and transmission power of a tactical FM radio for the blue force have been measured for the joint analysis.