• Title/Summary/Keyword: 전자 스트립

Search Result 492, Processing Time 0.027 seconds

Analysis of the Electromagnetic Scattering of Resistive Strip Grating with Uniform Resistivity on a Grounded Dielectric Layer - H-Polarization Case - (접지된 유전체 위의 저항율이 일정한 저항띠 격자구조에 대한 전자파 산란 해석 - H-분극인 경우 -)

  • Tchoi Young-Sun;Yang Seung-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.321-327
    • /
    • 2006
  • In this paper, when a H-polarized plane wave is incident on the grating consisting of uniform resistive strips, electromagnetic scattering is analyzed using the moment of methods (MoM). The current density of each resistive strip on a grounded dielectric plane is fixed by zero at both edges. To satisfy the condition at both ends of each resistive strip, the induced surface current density is expanded in a series of cosine and sine functions. The scattered electromagnetic fields are expanded in a series of floquet mode functions. The boundary conditions are applied to obtain the unknown current coefficients. According to the variation of the involving parameters such as strip width and spacing and angle of the incident field, numerical simulations are performed by applying the Fourier-Galerkin moment method. The numerical results of the normalized reflected power for resistive strips case for zero and several resistivities are obtained.

Analysis of E-polarized Plane Wave Scattering by a Tapered Resistive Strip Grating in a Grounded Double Dielectric Layer (접지된 2중 유전체 사이의 저항 띠 격자 구조에 의한 E-분극 전자파 산란 해석)

  • Tchoi, Young-Sun;Yang, Seung-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.656-663
    • /
    • 2007
  • In this paper, when a E-polarized plane wave is incident on the grating consisting of tapered resistive strips, electromagnetic scattering is analyzed using the method of moments(MoM). The induced current density of each resistive strip in a grounded double dielectric layer is expected to blow up at both edges. To satisfy this, the induced surface current density is expanded in a series of Chebyshev polynomials of the second kind. The scattered electromagnetic fields are expanded in a series of Floquet mode functions. The boundary conditions are applied to obtain the unknown current coefficients. According to the variation of the involving parameters such as strip width and spacing and angle of the incident field, numerical simulations are performed by applying the Fourier-Galerkin moment method. The numerical results of the normalized reflected power for resistive strips case for several resistivities are obtained.

A Study on TE Scattering by a Conductive Strip Grating Over a Dielectric Layer (유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4158-4163
    • /
    • 2015
  • In this paper, the solutions of TE(transverse electric) scattering problems by a condutive strip grating over a dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic fileld. The scattered electromagnetic fields are expanded in a series of floguet mode functions, the boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is used for the relationship between the tangential electric field and the induced surface current density on the strip. The numerical results for the reflected and transmitted power of zeroth mode analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of dielectric layer, and incident angles. Generally, according to the relative permittivity of dielectric layer increased, also the normalized reflected power of zeroth mode increased. To examine the accruacy of this paper, the numerical results of FGMM shown in good agreement compared to those of PMM.

A Study on TE Scattering by a Resistive Strip Grating Between a Double Dielectric Layer Using PMM (PMM을 이용한 2중 유전체층 사이의 저항띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.21-26
    • /
    • 2019
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating between a double dielectric layer are analyzed by using the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the resistive boundary condition is applied to analysis of the resistive strip. The numerical results for the normalized reflected and transmitted power are analyzed by according as the width and spacing of resistive strip, the relative permittivity and thickness of the double dielectric layers, incident angles, and uniform resisitivity. Typically, the reflected power for the conductive strip increased as the value of the relative dielectric constant increased, the reflected power for the resistive strip with uniform resistivity decreased as the value of the resisvivity increased. The numerical results for the presented structure of this paper are shown in good agreement compared to those of the existing papers.

Slot Antenna Embedded in a PCB for Zigbee Communication (지그비 통신용 PCB 내장형 슬롯 안테나)

  • Woo, Hee-Sung;Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.223-228
    • /
    • 2021
  • In this paper, we proposed a slot-type antenna with microstrip feed embedded in a PCB for Zigbee communication (2.4 ~ 2.484 GHz). The proposed antenna is designed on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 50×65 mm2. Through simulations, trends of design parameters are analyzed and optimized, and the proposed antenna composed with three slots satisfy the frequency band. The measured impedance bandwidths (|S11| ≤ -10 dB) of fabricated antenna are 900 MHz (2 ~ 2.9 GHz) in Zigbee frequency band. In addition, the radiation pattern showed omnidirectional characteristics for E and H-planes, and the gain of antenna in Zigbee frequency band was 1.782 dBi.

Design of Chipless RFID Tags Using Electric Field-Coupled Inductive-Capacitive Resonators (전계-결합 유도-용량성 공진기를 이용한 Chipless RFID 태그 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.530-535
    • /
    • 2021
  • In this paper, the design method for a chipless RFID tag using ELC resonators is proposed. A four-bit chipless RFID tag is designed in a two by two array configuration using three ELC resonators with different resonant peak frequencies and one compact IDC resonator. The resonant peak frequency of the bistatic RCS for the IDC resonator is 3.125 GHz, whereas those of the three ELC resonators are adjusted to be at 4.225 GHz, 4.825 GHz, and 5.240 GHz, respectively, by using the gap between the capacitor-shaped strips in the ELC resonator. The spacing between the resonators is 1 mm. Proposed four-bit tag is fabricated on an RF-301 substrate with dimensions of 50 mm×20 mm and a thickness of 0.8 mm. It is observed from experiment results that the resonant peak frequencies of the fabricated four-bit chipless RFID tag are 3.290 GHz, 4.295 GHz, 4.835 GHz, and 5.230 GHz, respectively, which is similar to the simulation results with errors in the range between -2.3% and 0.2%.

Impact of Substrate Size on the Radiation Characteristics of an H-plane 5-Elements Linear Aperture Coupled Microstrip Patch Array Antenna (기판 크기가 H-평면 5소자 선형 개구면 결합 패치 배열 안테나의 방사 특성에 미치는 영향)

  • Bak, Hye-Lin;Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.37-45
    • /
    • 2016
  • The effect of substrate size on the radiation characteristics of an H-plane 5-elements linear array antenna with an aperture coupled microstrip patch antenna (ACMPA) as unit element is investigated. The distance between the patch center and the substrate edge on the E-plane ($d_E$) and that on the H-plane ($d_H$) at which the maximum broadside gain of an H-plane 5-elements linear array antenna occurs are the same to those of single ACMPA using a unit element. Besides, $d_E$ and $d_H$ at which the minimum broadside gain of an H-plane 5-elements linear array antenna occurs are almost the same to those of single ACMPA using a unit element. The edge effect on the radiation characteristics of an H-plane 5-elements linear array antenna is mainly determined by $d_E$. The optimum substrate size for the radiation characteristics of an H-plane linear array antenna could be obtained from that of single ACMPA using a unit element of an H-plane linear array antenna.

Design of the Microwave Oscillator with the C type DGS Resonator (C형태의 DGS 공진기를 이용한 초고주파 발진기 설계)

  • Kim, Gi-Rae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.243-248
    • /
    • 2015
  • Since phase noise is one of the most important parameters in the design of microwave oscillators, several methods have been proposed to reduce the phase noise. These methods have focused on improving the quality factor of resonators, which result in low phase noise oscillators. Dielectric resonators have been widely used for low phase noise in microwave oscillators due to their high quality factor. However this cannot be used in MMIC oscillators because they have a 3D structure. In this paper, to overcome this problem a novel resonator using open ring type DGS is proposed for improvement of phase noise characteristics that is weak point of oscillator using planar type microstrip line resonator, and oscillator for 5.8GHz band is designed using proposed DGS resonator. The open ring type DGS resonator is composed of DGS cell etched on ground plane under $50{\Omega}$ microstrip line. At the fundamental frequency of 5.8GHz, 6.1dBm output power and -82.7 dBc@100kHz phase noise have been measured for oscillator with ring type DGS resonator. The phase noise characteristics of oscillator is improved about 96.5dB compared to one using the general ${\lambda}/4$ microstrip resonator.

Design and Implementation of Linear Gain Equalizer for Microwave band (초고주파용 선형 이득 등화기 설계 및 제작)

  • Kim, Kyoo-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.635-639
    • /
    • 2016
  • In the devices used in the microwave frequency band, the gain decreases as the frequency increases due to the parasitic component. To compensate for these characteristics, a linear gain equalizer with an opposite slope is needed in wideband systems, such as those used for electronic warfare. In this study, a linear gain equalizer that can be used in the 18 ~ 40GHz band is designed and fabricated. Circuit design and momentum design (optimizations) were carried out to reduce the errors between design and manufacturing. A thin film process is used to minimize the parasitic components within the implementation frequency band. A sheet resistance of 100 ohm/square was employed to minimize the wavelength variation due to the length of the thin film resistor. This linear gain equalizer is a structure that combines a quarter wavelength-resonator on a series microstrip line with a resistor. All three 1/4 wavelength short resonators were used. The fabricated linear gain equalizer has a loss of more than -5dB at 40GHz and a 6dB slope in the 18 ~ 40GHz band. By using the manufactured gain equalizer in a multi-stage connected device such as an electronic warfare receiver, the gain flatness degradation with increasing frequency can be reduced.

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.