• Title/Summary/Keyword: 전자 분광학 분석

Search Result 144, Processing Time 0.031 seconds

Analysis for Buffer Leakage Current of High-Voltage GaN Schottky Barrier Diode (고전압 GaN 쇼트키 장벽 다이오드의 완충층 누설전류 분석)

  • Hwang, Dae-Won;Ha, Min-Woo;Roh, Cheong-Hyun;Park, Jung-Ho;Hahn, Cheol-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.14-19
    • /
    • 2011
  • We have fabricated GaN Schottky barrier diode (SBD) for high-voltage applications on Si substrate. The leakage current and the electrical characteristics of GaN SBD are investigated by annealing metal-semiconductor junctions. Ohmic junctions of Ti/Al/Mo/Au and Schottky junctions of Ni/Au are used in the fabrication. A test structure is proposed to measured buffer leakage current through a mesa structure. When annealing temperature is increased from $700^{\circ}C$ to $800^{\circ}C$, measured buffer leakage current is also increased from 87 nA to 780 nA at the width of 100 ${\mu}m$. The diffusion of Au, Ti, Mo, O into GaN buffer layer increases the leakage current and that is verified by Auger electron spectroscopy. Experimental results show that the low leakage current and the high breakdown voltage of GaN SBD are achieved by annealing metal-semiconductor junctions.

UV Light-assisted Photocatalytic Degradation of Simluated Methylene blue Dye by Multilayered ZnO Films (다층 ZnO 막에 의한 모의 메틸렌블루 염료의 자외선 광촉매분해)

  • Khan, Shenawar Ali;Zafar, Muhammad;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • As the use of chemical products increases in daily life, the removal of dye waste has also emerged as an important environmental issue. This dye waste can be decomposed using a photocatalyst, and the photocatalyst can be synthesized very cost-effectively by using the sol-gel technology. The sol-gel technology is not only very useful for nanoscale film formation, but also can simply form multilayer structures. Using a multiple spin coating method, in this study, a ZnO film with a multilayered structure (3 layers, 5 layers) was formed by using zinc oxide (ZnO), which is effective in decomposing various dyes. For performance comparison, a ZnO film having a single layer structure by a single spin coating method was prepared as a control. Structural and elemental analysis of ZnO film was performed using an X-ray diffraction analyzer and an energy dispersive X-ray spectrometer. A nanowire-like surface morphology could be observed through a scanning electron microscope. Additionally, UV-Vis spectrophotometer was used to measure the absorbance of UV light. The ZnO film with a five-layer structure degraded the simulated methylene blue by 49% more than the ZnO film with a single-layer structure. In conclusion, it was found that ZnO having a multilayered structure is useful as a photocatalyst that decomposes methylene blue dye more effectively.

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

$CO_2$ 클러스터 표면 처리를 이용한 그래핀 특성 향상에 관한 연구

  • Choe, Hu-Mi;Kim, Jang-A;Jo, Yu-Jin;Hwang, Tae-Hyeon;Lee, Jong-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.655-655
    • /
    • 2013
  • 그래핀은 높은 전자 이동도, 열전도도, 기계적 강도, 유연성 등의 고유한 특성으로 다양한 분야에 응용하기 위한 연구가 수행되고 있으며, 특히 전자 소자에의 적용에 관한 연구가 활발히 이루어지고 있다. 전자 소자에 적용하기 위해서는 성장 및 물성에 관한 규명, 응용 소자에 따른 특성 평가가 필요하다. 이러한 소자 특성은 그래핀 물성에 의한 영향이 기본적이지만 에칭, 전사 등의 공정 중 발생하는 오염, 표면 특성, 잔여물 등에 의한 물성 변화 또한 분석 및 제어에 관한 연구가 필요하다. 열화학증착법(thermal chemical vapor deposition)을 이용한 그래핀 합성은 구리 기판을 사용하며, 합성된 그래핀의 에칭, 박리 및 전사 공정이 있다. 이러한 공정 중 발생하는 오염 입자가 그래핀 표면에 흡착되거나, 제거되지 않은 PMMA 잔여물이 그래핀의 특성에 영향을 미치게 된다. 따라서 본 연구에서는 $CO_2$ 클러스터의 표면 충돌을 이용하여 이러한 오염 물질 및 잔여물을 제거하고 그래핀 표면을 평탄화하는 것에 관한 연구를 수행하였다. 가스 클러스터란 작동기체의 분자가 수십에서 수백 개 뭉쳐 있는 형태를 뜻하며 이렇게 형성된 클러스터는 수 nm 크기를 형성하게 된다. 그리고 짧은 시간의 응축에 의해 수십 nm 크기 까지 성장 하게 된다. 클러스터를 이용한 표면 처리는 충돌에 의한 제거에 기반 한다. 따라서 생성 및 가속되는 클러스터로부터 대상으로 전달되는 운동량의 정도가 세정 특성에 영향을 미치며 이는 생성되는 클러스터의 크기에 종속적이다. 생성 클러스터의 크기 분포는 분사거리, 유량, 분사 각도, 노즐 냉각 온도 등의 변수에 관한 함수이다. 본 연구에서는 이러한 변수들을 제어하여 클러스터를 이용한 그래핀 표면 처리 실험을 수행하였다. 평가는 클러스터 표면 처리 전과 후의 특성 비교에 기반 하였으며, 광학 현미경을 이용한 표면 형상 측정, 라만분광 분석, AFM을 이용한 표면 조도 측정, 그래핀 면저항 측정 결과를 비교하였다. 평가 결과를 통하여 표면 처리를 하지 않은 그래핀에 비하여 면저항과 표면 조도가 낮아지는 것을 확인 할 수 있었다. 또한 클러스터 세정은 300 mm 웨이퍼 크기 이상의 대면적을 짧은 시간에 건식으로 세정할 수 있다는 장점이 있어 향후 최적화를 통해 그래핀 양산 시 특성 향상을 위한 후처리 방법으로 사용될 수 있음을 확인하였다.

  • PDF

Fabrication and Properties of Au fine Particles Doped ZrO2 Thin Films by the Sol-gel Method (졸-겔법에 의한 Au 미립자 분산 ZrO2 박막의 제조와 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.475-480
    • /
    • 2003
  • Nanocomposite of Au doped ZrO$_2$ films was prepared, which could be used as non-linear optic materials, selective absorption and transmission films. After heat treatment of prepared thin film by dip-coating method, the characteristics were investigated by X-ray diffraction, UV-VIS Spectrometer, Atomic Force Microscopy (AFM) and Scanning Electron Microscope (SEM). Film thickness was about 150 nm, the Au particle size was 15~35 nm. The thin film had a smooth surface roughness about 1.06 nm. Nonlinearity optics was found that films showed absorption peak at 600~650 nm visible region by plasma resonance of Au metal particles.

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.

Formation of Silver Nanoparticles in Polystyrene-b-Poly(oxyethylene methacrylate) Block Copolymer Membranes (Polystyrene-b-Poly(oxyethylene methacrylate) 블록 공중합체 막을 이용한 은 나노입자 생성)

  • Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • A diblock copolymer of polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) was synthesized via atom transfer radical polymerization (ATRP), as revealed by FT-IR spectroscopy. The self-assembled block copolymer membrane was prepared and used to template the growth of silver nanoparticles in the solid state by the introduction of $AgCF_3SO_3$ precursor and UV irradiation process. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed the in situ formation of silver nanoparticles within the block copolymer membranes, and the size of nanoparticles were controlled by adjusting the moiety of hydrophilic POEM domains. PS-b-POEM block copolymer with a lower POEM content was effective in generating smaller size of metal nanoparticles.

Properties of Nano-sized Au Particle Doped ZrO2 Thin Film Prepared by the Sol-gel Method (졸-겔법에 의한 나노 사이즈 Au 미립자 분산 ZrO2 박막의 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1197-1201
    • /
    • 2003
  • Thin film on SiO$_2$ glass was synthesized by a dip-coating method from the ZrO$_2$ sol which had dispersed nanosize Au particle under ambient atmosphere. After heat treatment of the prepared thin film, the characteristics were investigated by X-ray diffraction, UV-VIS spectrometer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). It was found that ZrO$_2$ thin film with 100 nm thickness was crystallized to tetragonal phase at 50$0^{\circ}C$. The size of dispersed Au particle was 15∼40nm and the film had a smooth surface with a roughness of 0.84 nm. The film showed nonlinearity characteristics with absorption peaks at 630∼670nm visible region because of the plasma resonance of Au metallic particles.

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Characterization of Tussah (Antheraea pernyi) Silk Fibroin Powder Prepared by HCI and NaOH (작잠견피브로인 분말의 제조와 그 특성)

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Lee, Yong-Woo
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 1999
  • Antheraea pernyi silk powder was prepared by treatment with HCl and NaOH. The degree of hydrolysis of Antheraea pernyi silk fiber was examined. The morphology and structural characteristics of Antheraea pernyi silk powder were investigated by using SEM, FTIR and X-ray diffractometer. As the concentration of HCl and NaOH and tratment temperature increased, in general, the degree of hydrolysis of Antheraea pernyi silk fiber increased. On the other hand, the degree of hydrolysis of Antheraea pernyi treated with 3 N NaOH at 120$^{\circ}C$ for 24 hr was 70 wt%, which was lower than that of 90$^{\circ}C$(83 wt%). The morphology of acid/alkali resistance fraction of Antheraea pernyi silk fibroin was transformed from fiber form to powered one with an increase of hydrolysis. The conformation of Antheraea pernyi silk powder characterized by FT-IR spectrometer and X-ray diffractometer ${\beta}$-sheet and ${\alpha}$-helix structure.

  • PDF