• Title/Summary/Keyword: 전자기교반

Search Result 35, Processing Time 0.028 seconds

The removal of iron oxides from raw materials by superconducting magnetic separator (초전도 자기분리를 이용한 원료에서의 철산화물 제거)

  • Kwon, Jun-Mo;Ha, Dong-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.21-21
    • /
    • 2010
  • 현재 시대에는 자원의 부족으로 인하여 원재료의 낮은 등급을 정제하는 것이 중요하다. 자기분리 기술이 산업 계 원재료들의 정제에 적용되는 것이 기대된다. 예를 들면 고순도의 유리나 절연체를 제작하기 위한 원재료에서 철산화물의 제거는 매우 중요하다. 자기를 띠는 입자들과 자기분리 필터 와이어 사이에 발생하는 끌어당기는 힘은 다른 자기분리와 비교 할 때 초전도 자기분리에서 훨씬 강하다. 초전도 마그네트를 이용하여 높은 자기장을 형성하기 때문에 일반 자기분리의 자성 입자 포획력을 능가한다. 본 연구에서는 습식 조건에서 산업계 원재료로부터 철계 산화물을 제거하기 위해서 초전도 자기문리를 사용하여 실험하였다. 실험에 사용된 시료는 유리원료로 사용되는 2종류로 시료A는 0.1 ~ 0.3 mm의 평균입도를 갖는 모래형상이며 시료B는 평균입도 0.03 ~ 0.1 mm의 고운모래 형태이다. 자기분리를 위해 상온에서 100 mm의 직경을 갖는 600 mm의 높이의 전도냉각형 Nb-Ti 초전도 마그네트를 사용하였으며 시료를 위에서 공급하고 아래로 배출되도록 수직형으로 설치하였다. 시료 500 g과 증류수 2 L를 혼합하여 교반시키고 6 T의 자기장 하에서 실험하였다. 자기분리 필터는 초전도 마그네트에서의 자기장의 분포를 해석하여 디자인하였다. 자기분리 필터의 자기적 특성을 알아보기 위해 진동시료형 자력계를 사용하였다. 산업계 원재료는 X선 형광분석기를 사용하여 성분을 분석하였다. 산업계 원재료를 이용하여 초전도 자기분리를 실시한 결과 철계 산화물은 시료A에서 43.5 %제거되었으며 시료B에서는 77.3%제거되었다.

  • PDF

Preparation and Characterization of Polyurethane Microcapsules Containing Functional Oil (기능성 오일을 함유하는 폴리우레탄 마이크로캡슐의 제조 및 분석)

  • 김인회;서재범;김영준
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.400-409
    • /
    • 2002
  • Polyurethane microcapsules containing functional oil (citronella oil) were successfully prepared by conventional interfacial polymerization of tolulene 2,4-diisocyanate (TDI) and ethylene glycol (EG) and characterized by Fourier transform (FT-IR) spectroscopy, Ultraviolet spectroscopy, particle size analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Tile effects of polymerization variables, such as surfactant concentration and agitation speed, on the particle size and particle size distribution were investigated. FT-IR spectroscopic data showed that citronella oil was successfully encapsulated in the microcapsule. Thermogravimetric analysis data showed that the microcapsule was thermally stable up to $220^{\circ}C$. The controlled release of the citronella oil present in the microcapsule core in a methanol medium was demonstrated by ultraviolet spectroscopy showing that the amount of released citronella oil was increased with increasing time. It was observed that the amount of released citronella oil was increased with increasing stirring speed and emulsifier concentration in the rnicrocapsule preparation step. Polyurethane microcapsules containing citronella oil showed excellent anti-moth property.

Preparation and Characteristics of Poly(ε-caprolactone) Microcapsules Containing Pseudomonas by W/O/W Emulsion (다중에멀젼법을 통한 슈도모나스를 함유하는 PCL 마이크로캡슐의 제조 및 특성 연구)

  • Kim, Ki-Seok;Lee, Seung-Yeop;Lee, Gun-Woong;Kim, Hyung-Gon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.202-207
    • /
    • 2012
  • Biodegradable poly(${\varepsilon}$-caprolactone)(PCL) microcapsules containing pseudomonas were prepared by W/O/W emulsion system. The characteristics and release behaviors of the microcapsules were investigated as a function of manufacturing conditions. The morphology and particle distribution of the microcapsules were observed by a scanning electron microscope and a particle size analyzer. The release behaviors of the pseudomonas were determined using a cell culture method. It was found that smooth and spherical microcapsules were formed by W/O/W emulsion system and particle size was in the range of 10 to 60 ${\mu}m$. The release behaviors of the pseudomonas were influenced by the manufacturing conditions. It was indicated that the increase of the surfactant content and stirring rate led to an increased release rate, resulting from the high specific surface area of the smaller particle size, and the increase of the PCL content provided the sustained release behaviors by the delay effect of diffusion in the release medium.

The Effect of Electromagnetic Stirring on the Microstructure of A356 Al Alloy by the Continuous Casting Process (A356 합금의 연속주조시 전자기 교반에 따른 미세조직 변화)

  • Kim, Won-Bae;Kwon, Tae-Woo;Kim, Jong-Chul;Park, Tae-Ho;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.4
    • /
    • pp.156-160
    • /
    • 2005
  • There are many factors that influence solidification behavior during continuous casting, e.g. include superheat, casting speed, cooling rate and holding time. However, when melt is stirred by electromagnetic force, there would be some changes in its solidification behavior compared to that of the ordinary casting process. In this study, the billets of A356 alloy with a diameter of 3 inch were fabricated with electromagnetic stirring under various conditions of superheat, casting speed and input voltage of electro magnetic stirring (EMS) device. The microstructure was also investigated under the various casting conditions and electromagnetic input voltages. When increase in input voltage, the microstructure was changed from dendritic to rosette type and finally to spheroidal. With pouring temperature, casting speed and electromagnetic input voltage were $650^{\circ}C$, 100 mm/min and 140 V, respectively, the billet with a diameter of 3 inch, which has a uniform dispersed spheroidal particles in the whole area of billet except for the surface area, was manufactured.

Microstructural Evolution of Electromagnetically Stirred Al alloy Billet During Isothermal Reheating at the Solid-liquid State (전자기 교반한 알루미늄합금 빌렛의 재가열시 고액공존구역에서의 조직변화)

  • Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.129-135
    • /
    • 2008
  • The reheating stage of electromagnetically stirred Al billet is a critical factor in the thixoforming process. When reheated to the solid-liquid state, the microstructure evolves to a more globular and more homogeneous structure by a coarsening mechanism, the kinetics depending on the initial microstructure. Microstructural evolution has been characterized by conventional parameters (mean size of particle and shape factor) as a function of holding time in the solid-liquid state. The aim of this study is to report experimental results concerning microstructural evolution in the solid-liquid state of electromagnetically stirred Al billet. The material was elaborated in the form of continuously cast bars solidified with electromagnetic stirring to degenerate the dendritic structure. The choice of the reheating conditions is determined by a dendritic ripening and coalescence mechanism, involving variations of both the shape and size of the particles. The reheating time has to be long enough to allow a minimum degree of spheroidizing, but has to be limited as much as possible in order to avoid excessive ripening. The optimum microstructure was obtained at the reheating temperature of near $584^{\circ}C$ and the holding time of 5 min. The only means of combining high productivity with good casting quality was to use feedstock billets whose microstructure showed rapid transformation characteristics.

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

Reductive Degradation of hexachloroethane by using Iron Minerals: Kinetics studies (철 광물에 의한 헥사클로에탄의 환원적 분해: 반응 속도 연구)

  • Kim, Sung-Kuk;Park, Sang-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.20-27
    • /
    • 2004
  • Kinetic characteristics dependent on several factors such as iron mineral and organic solvents were investigated. When F $e^{0}$ , FeS and Fe $S_2$ were used as mediators, minerals affecting reaction rate were in the following order : $Fe_{0}$ 0/ > FeS > $FeS_2$ when in contact $C_2$C $l_{6}$ . The more chloride substituted, the higher reaction rate were observed. The reaction rates were dependent on pH, shaking rate, temperature and specific surface area. 1, 10-phenanthroline and EDTA degradation rates were fast, indicating that they adsorbed on the surface of the iron which makes the electron transfer reaction easy. Nitrate which has $\pi$* orbital of molecular can increase electron transfer rate because it is delocalized in its entity. The reaction rates were not affected by hydroquinone. Degradation rates were much enhanced with naturally occurring kaolinite because of the surface corrosion of Fe mineral. However, The reaction rate was not affected by F $e^{2+}$ or S $O_4$$^{2-}$ presented in solution.n.

Development of Biodegradable Polymeric Membrane for Interventional Procedure: Preliminary Study (인터벤션 시술을 위한 생분해성 고분자막의 개발 : 예비연구)

  • Bang, Jung-Wan;Hyun, Chang-Yong;Kim, Tae-Hyung;So, Woon-Young;Kim, Jin-Tae;Kim, Sang-Sub;Jung, Hee Dong;Heo, Yeong Cheol
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • This study was to evaluate clinical feasibility of biodegradable polymeric membrane for interventional procedure in preliminary study. Bio-degradable polymetric membrane was produced into a solution by mixing hyaluronic acid powder with NaOH solution in a heating mantle. Three different concentrations of contrast media (10, 20, and 30 vol%) were added to the produced soluble powder, and vertical agitation was performed for 12 hours at a speed of 100 to 200 rpm at a room temperature. It was freeze dried for 24 hours at a temperature $80^{\circ}C$. Pressure on the freeze dried sample was exerted by a hydraulic press in order to form the freeze dried sample into a membrane. The membrane produced with varying contrast medium concentration was visually examined by a scanning electron microscope and radiographically inspected. Under the visual examination, the higher the concentration of contrast medium, the rougher the surface. Radiographic transparency was similar under all conditions of fluoroscopic radiography, simple radiography, and serial radiography. In conclusion, this preliminary study verified that bio-degradable membrane produced with hyaluronic acid was a material with clinical usability.

A study on influence of precipitation condition on rounding of AUC particles (AUC 침전조건이 둥근 AUC 입자 제조에 미치는 영향)

  • 김응호;정원명;박진호;유재형;최청송
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1998
  • Mechanisms and conditions for rounding of AUC particles were examined during AUC precipitation. Rounding of AUC particle was possible only by external circulation using pump, not by internal circulation using agitator. The rate of AUC rounding $(dn_p/dt)$ was proporational to operation conditions such as magma density $(M_t:g-U/{\iota}l)$, turn over ratio $(T_o)$ and impeller tip velocity of pump (U); $ dn_p/dt{\propto}M_t{\cdot}T_o{\cdot}U^2$. The validity of this relationship was qualitatively confirmed by comparing the expermental results. Two rounding mechanisms were suggested. One is crack formation mechanism and the other etch-pit formation mechanism on the surface of AUC particle. It was found that the crack formation is more dominant at the initial stage and the etch-pit formation at the final stage of the AUC precipitation.

  • PDF

ZnO 나노입자를 포함한 고분자 나노 복합 소재를 사용하여 제작한 WORM 메모리 소자 안정성

  • Son, Jeong-Min;Yun, Dong-Yeol;Jeong, Jae-Hun;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.71-71
    • /
    • 2011
  • ZnO 반도체가 넓은 에너지띠와 큰 엑시톤 결합에너지를 가지기 때문에 가진 투명 전극, 태양전지, 발광소자 및 메모리와 같은 다양한 전자 및 광전자 소자의 응용에 대한 많은 연구가 활발히 진행되고 있다. 본 논문에서는 절연성 고분자인 폴리스티렌 박막에 분산되어 있는 ZnO 나노 입자를 기억 매체로 사용하는 write-once-read-many times (WORM) 메모리 소자를 제작하고 전기적 성질과 안정성에 대하여 관찰하였다. 화학적 방법으로 형성한 ZnO 나노입자와 폴리스티렌을 N,N-dimethylformamide 용매에 녹인 후 초음파 교반기를 사용하여 나노 복합 소재를 형성하였다. 하부 전극으로 indium-tin-oxide가 증착되어 있는 유리 기판 위에 나노 복합 소재를 스핀코팅 방법으로 도포한 후 열을 가해 잔류 용매를 제거하였다. ZnO 나노입자가 분산되어 있는 폴리스티렌 나노 복합 소재로 구성된 박막위에 상부 전극으로 Al을 열증착하여 메모리 소자를 제작하였다. 전류-전압 측정 결과에서 저전압에서는 전도도가 낮은 OFF 상태를 유지하다 약 1.5 V에서 전도도가 갑자기 증가하여 높은 전도도의 ON 상태로 전이되는 쌍안정성이 관찰되었다. 전류의 ON/OFF 비율은 약 103이며 ON 상태에서 OFF 상태로 전환되지 않는 전형적인 WORM 메모리 소자의 전류-전압 특성을 나타났다. 두 전극 사이에 폴리스티렌 박막으로만 제작된 소자를 제작하여 전류-전압 측정을 하였으나 메모리 특성이 나타나지 않았다. 그러므로 WORM 메모리 특성은 폴리스티렌 박막안의 ZnO 나노입자에 기인함을 알 수 있었다. 제작된 소자에 대해 기억 시간 측정 결과는 ON과 OFF 상태의 전류가 장시간에도 변화가 거의 없는 소자의 안정성을 보여주었다. 이 실험 결과는 ZnO 나노입자가 분산된 폴리스티렌 나노 복합 구조체를 사용하여 안정성을 가진 WORM 메모리 소자를 제작할 수 있음을 보여주고 있다.

  • PDF