The purpose of this study is to analyze whether analogy distance and mathematical knowledge affect on transfer problems solving with different analogy distance. To conduct the study, transfer problems were classified into multiple categories: mathematical word problem based on rates, science word problem based on rates, and real-life problem based on rates with different analogy distance. Then analysed there are differences in participants' transfer ability and which mathematical knowledge contributes to the solution on over the three transfer problem. The study demonstrated a statistical significant difference(.05) in participants' three transfer problem solving and a gradual decrease of the participants' success rates of on transfer problems solving. Moreover, conceptual knowledge influenced transfer problem solving more than factual knowledge about rates. The study has an important implications in that it provided new direction for study about transfer of learning, and also show a good mathematics instruction on where teachers will put the focus in mathematical lesson to foster elementary students' transfer ability.
In autonomous driving systems, the ability to classify pedestrians in images captured by cameras is very important for pedestrian safety. In the past, after extracting features of pedestrians with HOG(Histogram of Oriented Gradients) or SIFT(Scale-Invariant Feature Transform), people classified them using SVM(Support Vector Machine). However, extracting pedestrian characteristics in such a handcrafted manner has many limitations. Therefore, this paper proposes a method to classify pedestrians reliably and effectively using CNN's(Convolutional Neural Network) deep features and transfer learning. We have experimented with both the fixed feature extractor and the fine-tuning methods, which are two representative transfer learning techniques. Particularly, in the fine-tuning method, we have added a new scheme, called M-Fine(Modified Fine-tuning), which divideslayers into transferred parts and non-transferred parts in three different sizes, and adjusts weights only for layers belonging to non-transferred parts. Experiments on INRIA Person data set with five CNN models(VGGNet, DenseNet, Inception V3, Xception, and MobileNet) showed that CNN's deep features perform better than handcrafted features such as HOG and SIFT, and that the accuracy of Xception (threshold = 0.5) isthe highest at 99.61%. MobileNet, which achieved similar performance to Xception and learned 80% fewer parameters, was the best in terms of efficiency. Among the three transfer learning schemes tested above, the performance of the fine-tuning method was the best. The performance of the M-Fine method was comparable to or slightly lower than that of the fine-tuningmethod, but higher than that of the fixed feature extractor method.
The purpose of this study is to identify the correlations among learning self-efficacy, confidence in performance, perception of importance and transfer intention for core basic nursing skill in nursing students. The subjects of this study were 2nd grade students at a nursing university. The collected data were analyzed using SPSS 21.0 program. As a result, the transfer intention had a correlation with the learning self-efficacy (r=.49, p<.001), confidence in performance (r=.30, p=.006), perception of the importance (r=.31, p=.005). The results of this study suggest that further research is necessary to verify the causal relationship between the transfer intention and the related variables in order to develop an effective education program for promoting the transfer intention.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.102-104
/
2017
최근 Convolutional neural network (CNN)을 도입하여, SAR 영상의 목표물 인식 알고리즘이 높은 성능을 보여주었다. SAR 영상은 4 종류의 polarization 정보로 구성되어있다. 기계와 신호처리의 비용으로 인하여 일부 데이터는 적은 수의 polarization 정보를 가지고 있다. 따라서 우리는 SAR 영상 data 를 멀티모달 데이터로 해석하였다. 그리고 우리는 이러한 멀티모달 데이터에 잘 작동할 수 있는 콘볼루션 신경망을 제안하였다. 우리는 데이터가 포함하는 모달의 수에 반비례 하도록 scale factor 구성하고 이를 입력 크기조절에 사용하였다. 입력의 크기를 조절하여, 네트워크는 특징맵의 크기를 모달의 수와 상관없이 일정하게 유지할 수 있었다. 또한 제안하는 입력 크기조절 방법은 네트워크의 dead filter 의 수를 감소 시켰고, 이는 네트워크가 자신의 capacity 를 잘 활용한다는 것을 의미한다. 또 제안된 네트워크는 특징맵을 구성할 때 다양한 모달을 활용하였고, 이는 네트워크가 모달간의 상관관계를 학습했다는 것을 의미한다. 그 결과, 제안된 네트워크의 성능은 입력 크기조절이 없는 일반적인 네트워크보다 높은 성능을 보여주었다. 또한 우리는 전이학습의 개념을 이용하여 네트워크를 모달의 수가 많은 데이터부터 차례대로 학습시켰다. 전이학습을 통하여 네트워크가 학습되었을 때, 제안된 네트워크는 특정 모달의 조합 경우만을 위해 학습된 네트워크보다 높은 성능을 보여준다.
Suhyune Son;Chanjun Park ;Jungseob Lee;Midan Shim;Sunghyun Lee;JinWoo Lee ;Aram So;Heuiseok Lim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.295-299
/
2022
자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 존재한다. 본 논문은 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 적용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. 적은 양의 한국어 코퍼스인 400K와 4M만을 사용하여 다양한 한국어 사전학습 모델 (KLUE-BERT, KLUE-RoBERTa, Albert-kor)과 mBERT와 전반적인 성능 비교 및 분석 연구를 진행한다. 한국어의 대표적인 벤치마크 데이터셋인 KLUE 벤치마크를 사용하여 한국어 하위태스크에 대한 성능평가를 진행하며, 총 7가지의 태스크 중에서 5가지의 태스크에서 XPT-4M 모델이 기존 한국어 언어모델과의 비교에서 가장 우수한 혹은 두번째로 우수한 성능을 보인다. 이를 통해 XPT가 훨씬 더 많은 데이터로 훈련된 한국어 언어모델과 유사한 성능을 보일 뿐 아니라 학습과정이 매우 효율적임을 보인다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.5
/
pp.117-122
/
2024
Many studies on software defect prediction have been conducted, but it has been difficult to use them due to a lack of training data. Cross-project defect prediction is a technique to solve this problem, where a prediction model learned with sufficient training data from existing source project is used to predict defects in the target project. Before learning, domain adaptation techniques, a type of transfer learning, are used to minimize the difference in data distribution between the two projects. In this paper, we produced new prediction models using W-BDA and MEDA and compared their performance with existing models using TCA and BDA. As a result of the evaluation experiment, MEDA showed irregular and poor performance compared to other models, but BDA showed better performance than TCA, and W-BDA showed slightly better performance than BDA.
To accomplish the purpose, the current study drew factors affecting the transfer of education and training through a review of domestic and overseas literature, and aimed to empirically investigate whether these factors actually affect the transfer of education and training of fire officers. The results showed that significant variables affecting the degree of perception on the transfer of education and training were in the order of work relationship, learning culture, peer support, self-efficacy, learning motivation, learning ability, and teaching method.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.12
no.6
/
pp.1-12
/
2017
This paper is brought to asses the training effect of KS-QFD boot camp for the companies in the early growth stage. In particular, the focus of research falls on measuring transfer intension of the participants from the early stage companies older than three years old, motivating effect of applying knowledges acquired from KS-QFD training camp into their real business case. KS-QFD program is presented to help company in the early stage companies over three years old of boosting up their sales volume more than 5 times than now for the next 18 months by this training. The training program of KS-QFD is ultimately to design more practical and helpful program to real business and spread out. The research establish model by setting the learner readiness and perceived content validity by doing training design as independent variables, self-efficacy of learner as mediating variable, and transfer intension as dependant variable. Research results shows the following outcomes. First, learner readiness does not have directly effect on transfer intension under keeping statistical significance. But as the parameter of self-efficacy, it has perfect mediating effect. Second, research proves that perceived content validity have directly impact on learning transfer intension of mediating by self-efficacy partially. This research contributes on proving that learning by doing KS-QFD boot camp enable the participants to build up their self-efficacy and lead to enhance transfer intension. In more steps, the research validates that KS-QFD training camp have delivered very practical and helpful on-site knowledge to the participants.
The Journal of Korean Association of Computer Education
/
v.19
no.6
/
pp.55-68
/
2016
Informatics curriculum revised 2015 proposed the use of block type and text type of programming language by organizing problem solving and the programming unit in a spiral. The purpose of this study is to find out whether the algorithms helps programming learning and whether there is a positive transition effect in block type programming learning to text type programming trailing learning. For 15 elementary school students was conducted block type and text type programming learning. As a result of the research, it is confirmed that writing the algorithm in a limited way can interfere with the learner's expression of thinking, but the block type programming learning has a positive transition to the text type programming learning. This study is meaningful that it suggested a plan for the programming education which is sequential from elementary school.
Traditionally, most malicious codes have been analyzed using feature information extracted by domain experts. However, this feature-based analysis method depends on the analyst's capabilities and has limitations in detecting variant malicious codes that have modified existing malicious codes. In this study, we propose a ResNet-Variational AutoEncder-based variant malware classification method that can classify a family of variant malware without domain expert intervention. The Variational AutoEncoder network has the characteristics of creating new data within a normal distribution and understanding the characteristics of the data well in the learning process of training data provided as input values. In this study, important features of malicious code could be extracted by extracting latent variables in the learning process of Variational AutoEncoder. In addition, transfer learning was performed to better learn the characteristics of the training data and increase the efficiency of learning. The learning parameters of the ResNet-152 model pre-trained with the ImageNet Dataset were transferred to the learning parameters of the Encoder Network. The ResNet-Variational AutoEncoder that performed transfer learning showed higher performance than the existing Variational AutoEncoder and provided learning efficiency. Meanwhile, an ensemble model, Stacking Classifier, was used as a method for classifying variant malicious codes. As a result of learning the Stacking Classifier based on the characteristic data of the variant malware extracted by the Encoder Network of the ResNet-VAE model, an accuracy of 98.66% and an F1-Score of 98.68 were obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.