• Title/Summary/Keyword: 전열해석 시뮬레이션

Search Result 11, Processing Time 0.034 seconds

A Study on the Enhanced Tubes for Electric Utility Steam Condensers (발전소 응축기용 전열 촉진관에 대한 연구)

  • 김내현
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.207-212
    • /
    • 1995
  • 본 연구에서는 발전소 응축기를 시뮬레이션 할 수 있는 프로그램을 개발하였다. 관 내외 측 열전달계수의 계산에는 기존 상관식들과 응축 모델을 사용하였고 $\varepsilon$-NTU 방법을 사용하여 응축기를 해석하였다. 실제 응축기를 모사하기 위하여 관다발 보정계수 및 화울링 계수도 도입하였다. 이 프로그램을 사용하여 기존 평관을 대체할 전열촉진관의 형상을 도출하였다. 시뮬레이션 결과 전열촉진관을 사용하면 증기 응축 온도를 6 - 8 $^{\circ}C$ 정도 낮출 수 있음을 알 수 있었다.

  • PDF

A Study on Thermal Analysis with Strength Characteristics of HPC Column with Fiber Cocktail in KS Fire Curve (표준화재조건에서 Fiber Cocktail을 혼입한 고강도 콘크리트 기둥의 강도별 전열특성에 관한 연구)

  • Kim, Heung-Youl;Chae, Han-Sik;Kim, Hyung-Jun;Jeon, Hyun-Kyu;Youm, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.397-400
    • /
    • 2008
  • To carry out this study efficiently, the material, physical and mechanical properties of the existing high temperature area was identified and the thermal transportation of structural elements was carried out through the finite element analysis method(ABAQUS) for 40 to 100 MPa high strength concrete based on Fiber Cocktail mixing. The results are as follows. First, it was analyzed that 40, 50 and 60 MPa high strength concretes have a thermal transportation properties similar to the analysis model of 30 MPa normal concrete. Second, it was analyzed that the analysis model of 80 and 100 MPa high strength concrete have slightly lower thermal transportation properties compared to normal model. Third, this study didn't consider the explosive spalling by the pore pressure within high strength concrete. If the properties for the pore pressure within high strength concrete is considered and database by strength and by inner temperature of various high strength concrete and steel materials are established in the future, it is interpreted that the technical foundation will be laid for performance-based design of fire-resistant construction.

  • PDF

Thermal Performance of Wooden Building Envelope by Thermal Conductivity of Structural Members (목조건축물 구조부재의 열전도율에 따른 건물외피의 단열 성능)

  • Kim, Sughwan;Yu, Seulgi;Seo, Jungki;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.515-527
    • /
    • 2013
  • Building energy simulations which are mainly used in Korea have evaluated the building energy performance with the different thermal conductivity of construction materials. In order to evaluate the energy consumption accurately, the difference in thermal conductivity of the wood used in stud for wooden structure was confirmed from the each simulation. In addition, the thermal transmission of building members and the thermal bridge at the conjunction of building members according to thermal conductivity from each simulation programs were researched. The thermal conductivity of pine that has the largest variation among the energy simulations was applied to the thermal properties of studs in wooden structure. The maximum error between the maximum and minimum thermal transmission of roof, wall, and floor slab was $0.023W/m^2{\cdot}K$. Plus, that thermal bridge at Rafter junction on the roof, roof-wall joint, and floor slab-wall joint was $0.025W/m{\cdot}K$. The heat transfer image for changes in temperature and the heat exchange were analyzed by HEAT2 program. The distorted temperature lines were found around the insufficient insulated connection parts. It was predicted that the temperature at the distorted parts in the analyzed image was lower than that of the other portion of the other structures.

Evaluation of Heating and Cooling Thermal Output Characteristics of Prefabricated Steel Wall Panel System for Radiant Heating and Cooling (강판 마감형 조립식 벽패널 복사냉난방시스템의 냉난방 방열 특성 평가)

  • Lim, Jae-Han;Koo, Bo-Kyoung;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • Recently the radiant panel heating and cooling system has been regarded as an alternative of low temperature heating and high temperature cooling by applying the renewable energy sources to the heating and cooling of buildings. Especially this system can be used as HVAC system alternatives in super high-rise buildings for energy saving and thermal comfort. Also it can be possible to reduce the plenum space because the minimum ventilation air will be supplied into the space. This study focused on the evaluation the basic characteristics of thermal output in prefabricated steel wall panel system for radiant heating and cooling. In order to evaluate the thermal output according to both various supply water temperatures and supply water flow rates, three-dimensional dynamic heat transfer analysis was performed. As results, for the heating mode, thermal output increased by 26% with the supply temperature increasing by $5^{\circ}C$. The surface temperature of panels range within $1{\sim}3^{\circ}C$. For the cooling mode, thermal output decreased by 18.2% with the supply temperature increasing by $2^{\circ}C$. The surface temperature of panels range within $0.5{\sim}1^{\circ}C$ and it was shown the even temperature distribution.

A Study on the Energy Performance Renovation for the Sustainable the Residential Houses (친환경주거단지를 위한 에너지 성능개선에 관한 연구)

  • Park, Jin-Chul;Kim, Ki-Hoon;Song, Gook-Sup;Lee, Hyun-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.89-96
    • /
    • 2003
  • In planning a building retrofit, energy conservation, thermal comfort and economic benefits should be considered. In this study, retrofit effects of exterior insulating method on preventing condensation, saving energy were analyzed through the heat transfer simulation, energy simulation in the apartment house retrofitted by exterior insulating method cheaper than other retrofit methods. The results of this study show that the retrofit using exterior insulating method can prevent the condensation at the corner walls and save about 20% of annual heating load. The LCC analysis revealed to be effective to select a dryvit system for a building retrofit.

Thermal Bridge and Heat Transfer Analysis for Each Part in Residential Building According to Construction of Wood-based Finishing Material (목질 마감재 구성에 따른 주거용 건축물 부위별 열교 및 전열성능 분석)

  • Seo, Jungki;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.343-359
    • /
    • 2017
  • Many researches and policies have been carried out for saving energy in buildings. However, there are a few studies of thermal characteristics of wood-based materials that have been widely used as structural materials and finishing materials in buildings. In this study, thermal bridging areas were found to investigate thermal performance of residential building using non wood-based materials and wood-based materials. And heat transfer analysis of 16 case studies according to composition of structural materials and finishing materials was conducted. Also in this experiment, Physibel Trisco was used as the heat transfer analysis simulation tool, which conforms to the calculation method of ISO 10211. Analytical modeling was also carried out according to the ISO 10211, and the boundary temperature conditions were set at room temperature $20^{\circ}C$ and outdoor temperature $-11.3^{\circ}C$ (Seoul standard) according to the energy saving design standard in South Korea. Applied structures are classified according to the cases of concrete structure with non wood-based finishing materials, concrete structure with wood-based finishing materials and wood structure. Analyzed building elements were divided into a wall, a roof, an interlayer floor and a bottom floor. As a result, it can be confirmed that the thermal bridge of the concrete structure and wood structure were caused by the geometrical and material causes. In addition, the structural thermal bridge was caused in the discontinuity of the insulation in the concrete structure. Also it was confirmed that the linear heat transfer coefficient of the wall decreases when the wood-based materials are applied to the concrete structure.

Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds (블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구)

  • Joe, Won-Hwa;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • This study evaluated the energy efficiency of a windows system using built-in blinds, with regard to their insulation performance and their blocking of solar radiation. The study took advantage of the "Physibel Voltra" program as a physical simulation of heat transfer. To simulate the "Physibel Voltra" program, I practiced a mock-up test to determine heating quality and translation condition. I analyzed the propensity to annual energy consumption, the annual quantity of heat transfer, and the annual cooling and heating cost through a computer simulation for one general household in an apartment building. In the test, it was found that compared to a general windows system, a windows system with built-in blinds reduced the annual heat transfer by 10% in cooling states and by 11% in heating states when the blind was up. When the blind was down, the windows system with built-in blinds reduced the annual heat transfer by 25% in cooling states and 30% in heating states. When a windows system with built-in blinds is compared with a general windows system, the quantity of cooling and heating loads is reduced by 283.3kw in cooling states and 76.3kw in heating states. This leads to a reduction in the required cooling and heating energy of 359.6kw per house. It is thus judged that the use of a windows system with built-in blinds is advantageous in terms of reducing greenhouse gas emissions, because the annual TOE (tons of oil equivalent) per house is reduced by 0.078TOE, while $tCO_2$ is reduced by $0.16tCO_2$. In addition, compared with a general windows system, the cost of cooling and heating loads in the system reduces the annual cooling cost by 100,000won, and the annual heating cost by 50,000won. Ultimately, this means that cooling and heating loads are cut by 150,000won per year.

A Performance Evaluation of Plate Type Enthalpy Exchanger through CFD Analysis of Elements (열 교환 소자 형상의 CFD 시뮬레이션을 통한 판형 전열 교환기 성능평가)

  • Kang, In-Sung;Ahn, Tae-Kyung;Park, Jin-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In order to better save energy, many buildings have been constructed with high levels of insulation and airtightness in recent years. Additionally, having high quality indoor air has become more relevant, necessitating a ventilating system. This study is aimed at evaluating the performance of a humidity exchanger through computational fluid dynamics (CFD) analysis of elements for the purpose of providing comfortable indoor air and reduced energy consumption. The simulation was conducted with three different shapes (triangle, rectangular, and curve) of heat exchanger elements, in order to find the most effective element. A follow-up simulation then proved the efficiency of the chosen humidity exchanger, which was selected by analyzing the results of the preceding simulation, comparing study data with measurement data from the Korea Testing Laboratory (KTL). The resulting analysis revealed that the rectangular element showed the lowest level of efficiency in both heating and cooling, while the curved element showed the highest level of efficiency in both heating and cooling.

Thermo-Fluid Simulation for Flow Channel Design of 7kW High-Voltage Heater for Electric Vehicles (전기차용 7kW급 고전압 히터 유로 형상 설계를 위한 열유동 시뮬레이션)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • Unlike an international combustion engine car, a battery-powered electric vehicle requires an additional heat source for its heating system. A high-voltage coolant heater has the advantages of high efficiency and a wide operating temperature range. In its development, the geometry design of the coolant flow path is essential. This paper presents the thermal flow simulations of a 7kW high-voltage heater with symmetric serpentine flow channels arranged parallelly. The heater performance was evaluated from the simulation results in terms of the pressure and temperature differences and the flow uniformity. The proposed design showed a greater flow resistance and similar heat exchanging capability than the existing parallel serpentine design. It has the advantage of a relatively wide low-temperature surface area, where the control circuit board susceptible to high temperatures can be located.

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.