• Title/Summary/Keyword: 전압 측정

Search Result 3,001, Processing Time 0.028 seconds

Nanostructured energy harvesting devices and their applications for IoT sensor networks (나노구조체 에너지 하베스팅 소자와 IoT 센서 네트워크의 융합 연구)

  • Yoon, Chongsei;Jeon, Buil;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.719-730
    • /
    • 2021
  • We have demonstrated a sandwich-type ZnO-based piezoelectric energy harvesting nanogenerator, namely ZCZ-NG device, composed of symmetrically stacked layers of ZnO/carbon tape/ZnO structure. Especially, we have adopted a conductive double-sided adhesive carbon tape in an effort to fabricate a high-quality ZCZ-NG device, leading to its superior output performance in terms of the peak-to-peak output voltage. Effects of the device size, ZnO layer thickness, and bending strain rate on the device performance have been investigated by measuring the output voltage. Moreover, to evaluate the effectiveness of the fabricated ZCZ-NG devices, we have experimentally implemented a sensor network testbed which can utilize the output voltages of ZCZ-NG devices. This sensor network testbed consists of several components such as Arduino-based transmitter and receiver nodes, wirelessly transmitting the sensed information of each node. We hope that this research combining the ZnO-based energy harvesting devices and IoT sensor networks will contribute to the development of more advanced energy harvester-driven IoT sensor networks in the future.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Software Implementation of Welding Bead Defect Detection using Sensor and Image Data (센서 및 영상데이터를 이용한 용접 비드 불량검사 소프트웨어 구현)

  • Lee, Jae Eun;Kim, Young-Bong;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.185-192
    • /
    • 2021
  • Various methods have been proposed to determine the defect detection of welding bead, and recently sensor data and image data inspection have been steadily announced. There are advantages that sensor data inspection is highly accurate, and two-dimensional-based image data inspection is able to determine the position of the welding bead. However, when analyzing only with sensor data, it is difficult to determine whether the welding has been performed at the correct position. On the other hand, the image data inspection does not have high accuracy due to noise and measurement errors. In this paper, we propose a method that can complement the shortcomings of each inspection method and increase its advantages to improve accuracy and speed up inspection by fusing sensor data inspection which are average current, average volt, and mixed gas data, and image data inspection methods and is implemented as software. In addition, it is intended to allow users to conveniently and intuitively analyze and grasp the results by performing analysis using a graphical user interface(GUI) and checking the data and inspection results used for the inspection. Sensor inspection is performed using the characteristics of each sensor data, and image data is inspected by applying a morphology geodesic active contour algorithm. The experimental results showed 98% accuracy, and when performing the inspection on the four image data, and sensor data the inspection time was about 1.9 seconds, indicating the performance of software that can be used as a real-time inspector in the welding process.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Enhanced Performance of Li Metal Negative Electrode using Protection Film by Carbon Black and Polymeric Binder (카본블랙과 고분자 바인더로 구성된 보호필름을 통한 리튬금속 음극의 성능개선)

  • Noh, Seong Ho;Ryu, Da Young;Jang, Young Seok;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • In this study, the surface protection film based on organic-inorganic composite is manufactured for suppressing lithium dendrite growth, and the film is applied on the surface of Li metal negative electrode for lithium metal batteries (LMBs). The film is consist of the polyvinylidene fluoride (PVDF) polymeric binder which has good mechanical strength and high electrochemical stability, and carbon black (Super-P) which has outstanding electrical conductivity as the inorganic compound. First, in order to confirm the suppression of the internal short circuit by the lithium dendrite, the time required for the short circuit is measured while a constant current is continuously applied. As a result, the internal short circuit is delayed in proportion to the carbon black content of the film, and it is significantly delayed than bare Li metal electrode which does not use protection film. The cycle performance of the thick protection film (8 ㎛), is worse than that of the thin film (4 ㎛). However, as the carbon black content of the film increased, the cycle performance is improved. Thus, the surface protection film based on carbon black/PVDF composite can delay the internal short circuit, and has low overvoltage during the cycle. However, more stable cycle performance needs to be built through further improvements.

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

Fabrication of an Oxide-based Optical Sensor on a Stretchable Substrate (스트레처블 기판상에 산화물 기반의 광센서 제작)

  • Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.79-85
    • /
    • 2022
  • Recently, a smartphone manufactured on a flexible substrate has been released as an electronic device, and research on a stretchable electronic device is in progress. In this paper, a silicon-based stretchable material is made and used as a substrate to implement and evaluate an optical sensor device using oxide semiconductor. To this end, a substrate that stretches well at room temperature was made using a silicone-based solution rubber, and the elongation of 350% of the material was confirmed, and optical properties such as reflectivity, transmittance, and absorbance were measured. Next, since the surface of these materials is hydrophobic, oxygen-based plasma surface treatment was performed to clean the surface and change the surface to hydrophilicity. After depositing an AZO-based oxide film with vacuum equipment, an Ag electrode was formed using a cotton swab or a metal mast to complete the photosensor. The optoelectronic device analyzed the change in current according to the voltage when light was irradiated and when it was not, and the photocurrent caused by light was observed. In addition, the effect of the optical sensor according to the folding was additionally tested using a bending machine. In the future, we plan to intensively study folding (bending) and stretching optical devices by forming stretchable semiconductor materials and electrodes on stretchable substrates.

Urea Conversion via Enzymes Immobilized on Magnetic Microparticles (자성 미세입자에 고정된 효소를 통한 요소 전환)

  • Yeseul Park;Jieun Kwon;Seungjun Jung;Hyukjin Cho;Gounhanul Shin;Gangik Cho;Jin-Won Park;Kyung-Hyuk Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.407-411
    • /
    • 2023
  • The urease is covalently immobilized on the surface of the magnetic particles to catalyze the conversion of urea to bicarbonate anion. The conversion was confirmed qualitatively using high-pressure liquid chromatography and UV/Vis spectrometry, and analyzed quantitatively with cyclic voltammetry. The amount of conversion with respect to time was measured and analyzed by the reaction rate equation to calculate a reaction rate constant of 0.0474 min-1. In the 1 to 3 cycles, a conversion percentage of over 90% was found, and it was possible to reuse the urease 8 times up to the percentage of 50%. It was also observed that the stability evaluated for storage for 30 days was maintained. As a result of this study, it can be seen that the urease covalently immobilized on the scaffold can be used for urea removal for the purpose of producing ultrapure water.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.