• Title/Summary/Keyword: 전압조절발진기

Search Result 9, Processing Time 0.03 seconds

A Low Power, Wide Tuning Range VCO with Two-Step Negative-Gm Calibration Loop (2단계 자동 트랜스컨덕턴스 조절 기능을 가진 저전력, 광대역 전압제어 발진기의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents a low-power, wide tuning range VCO with automatic two-step negative-Gm calibration loop to compensate for the process, voltage and temperature variation. To cover the wide tuning range, digital automatic negative-Gm tuning loop and analog automatic amplitude calibration loop are used. Adaptive body biasing (ABB) technique is also adopted to minimize the power consumption by lowering the threshold voltage of transistors in the negative-Gm core. The power consumption is 2 mA to 6mA from a 1.2 V supply. The VCO tuning range is 2.65 GHz, from 2.35 GHz to 5 GHz. And the phase noise is -117 dBc/Hz at the 1 MHz offset when the center frequency is 3.2 GHz.

Study on the Phase Noise of Voltage Controlled Oscillator (전압조절발진기의 위상잡음 연구)

  • Park, Se-Hoon;Seo, Hee-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1057-1060
    • /
    • 2005
  • Noises from circuits components and interference with other circuits components generate the phase noise in voltage controlled oscillators (VCO). The effects of the random noise on the phase noise is depending on the instant when the noise enters the VCO. When the noise enters at the transition time of the output of VCO, the effect is most prominent. Using this time variable system, it is revealed that the power spectral density of phase noise of VCO is made of the integrated noise powers of frequency components slightly offset from the fundamental and harmonic frequencies.

  • PDF

A New Beam Tracking Technique Using Intermediate Frequency Processing (중간주파수 처리를 이용한 빔추적 능동위상 배열안테나)

  • 서철헌;최태규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.891-894
    • /
    • 2001
  • 본 논문에서는 능동 배열 안테나에서 RF 대신 중간주파수를 이용하여 빔 추적을 하는 방법이 연구되었다. 안테나의 각 배열은 전압제어 발진기, 위상추적기, 혼합기와 결합되어 있으며 혼합기는 안테나 상에서 직접 RF 신호를 직접 중간주파수 신호로 변환시킨다. 전압제어 발진기 입력은 위상추적기에 의하여 조절되며 배열 안테나의 주사범위는 위상추적기와 전압제어발진기에 의하여 결정되었다.

  • PDF

A $2{\sim}6GHz$ Wide-band CMOS Frequency Synthesizer With Single LC-tank VCO (싱글 LC-탱크 전압제어발진기를 갖는 $2{\sim}6GHz$의 광대역 CMOS 주파수 합성기)

  • Jeong, Chan-Young;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.74-80
    • /
    • 2009
  • This paper describes a $2{\sim}6GHz$ CMOS frequency synthesizer that employs only one LC-tank voltage controlled oscillator (VCO). For wide-band operation, optimized LO signal generator is used. The LC-tank VCO oscillating in $6{\sim}8GHz$ provides the required LO frequency by dividing and mixing the VCO output clocks appropriately. The frequency synthesizer is based on a fractional-N phase locked loop (PLL) employing third-order 1-1-1 MASH type sigma-delta modulator. Implemented in a $0.18{\mu}m$ CMOS technology, the frequency synthesizer occupies the area of $0.92mm^2$ with of-chip loop filter and consumes 36mW from a 1.8V supply. The PLL is completed in less than $8{\mu}s$. The phase noise is -110dBC/Hz at 1MHz offset from the carrier.

Design of a Clock and Data Recovery Circuit Using the Multi-point Phase Detector (다중점 위상검출기를 이용한 클럭 및 데이터 복원회로 설계)

  • Yoo, Sun-Geon;Kim, Seok-Man;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.72-80
    • /
    • 2010
  • The 1Gbps clock and data recovery (CDR) circuit using the proposed multi-point phase detector (PD) is presented. The proposed phase detector generates up/down signals comparing 3-point that is data transition point and clock rising/falling edge. The conventional PD uses the pulse width modulation (PWM) that controls the voltage controlled oscillator (VCO) using the width of a pulse period's multiple. However, the proposed PD uses the pulse number modulation (PNM) that regulates the VCO with the number of half clock cycle pulse. Therefore the proposed PD can controls VCO preciously and reduces the jitter. The CDR circuit is tested using 1Gbps $2^{31}-1$ pseudo random bit sequence (PRBS) input data. The designed CDR circuit shows that is capable of recovering clock and data at rates of 1Gbps. The recovered clock jitter is 7.36ps at 1GHz and the total power consumption is about 12mW. The proposed circuit is implemented using a 0.18um CMOS process under 1.8V supply.

The Study of If Frequency Synthesizer IC Design for Digital Cellular Phone (디지털 이동통신단말기용 IF 주파수합성기 IC개발에 관한 연구)

  • 이규복;정덕진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • In this paper, the design and simulation results of IF frequency synthesizer section has been described. We has been used 0.8 $\mu\textrm{m}$ BiCMOS device and library of the AMS. IF frequency synthesizer section has been contained IF VCO, Phase Detector, Divide_by_8, Charge Pump and Loop Filter. IF frequency synthesizer has been shown operating voltage of 2.7~3.6 V, control voltage of 0.5~2.7 V and supply current of 11 mA. The measured results have been showed good agreement with the simulation results about supply current.

  • PDF

Low Noise Phase Locked Loop with Negative Feedback Loop including Frequency Variation Sensing Circuit (주파수 변화 감지 회로를 포함하는 부궤환 루프를 가지는 저잡음 위상고정루프)

  • Choi, Young-Shig
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • A low phase noise phase locked loop (PLL) with negative feedback loop including frequency variation sensing circuit (FVSC) has been proposed. The FVSC senses the frequency variation of voltage controlled oscillator output signal and controls the volume of electric charge in loop filter capacitance. As the output frequency of the phase locked loop increases, the FVSC reduces the loop filter capacitor charge. This causes the loop filter output voltage to decrease, resulting in a phase locked loop output frequency decrease. The added negative feedback loop improves the phase noise characteristics of the proposed phase locked loop. The size of capacitance used in FVSC is much smaller than that of loop filter capacitance resulting in no effect in the size of the proposed PLL. The proposed low phase noise PLL with FVSC is designed with a supply voltage of 1.8V in a 0.18㎛ CMOS process. Simulation results show the jitter of 273fs and the locking time of 1.5㎲.