• 제목/요약/키워드: 전송지연

Search Result 2,393, Processing Time 0.027 seconds

A Tree-Based Routing Algorithm Considering An Optimization for Efficient Link-Cost Estimation in Military WSN Environments (무선 센서 네트워크에서 링크 비용 최적화를 고려한 감시·정찰 환경의 트리 기반 라우팅 알고리즘에 대한 연구)

  • Kong, Joon-Ik;Lee, Jae-Ho;Kang, Ji-Heon;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.637-646
    • /
    • 2012
  • Recently, Wireless Sensor Networks (WSNs) are used in many applications. When sensor nodes are deployed on special areas, where humans have any difficulties to get in, the nodes form network topology themselves. By using the sensor nodes, users are able to obtain environmental information. Due to the lack of the battery capability, sensor nodes should be efficiently managed with energy consumption in WSNs. In specific applications (e.g. in intrusion detections), intruders tend to occur unexpectedly. For the energy efficiency in the applications, an appropriate algorithm is strongly required. In this paper, we propose tree-based routing algorithm for the specific applications, which based on the intrusion detection. In addition, In order to decrease traffic density, the proposed algorithm provides enhanced method considering link cost and load balance, and it establishes efficient links amongst the sensor nodes. Simultaneously, by using the proposed scheme, parent and child nodes are (re-)defined. Furthermore, efficient routing table management facilitates to improve energy efficiency especially in the limited power source. In order to apply a realistic military environment, in this paper, we design three scenarios according to an intruder's moving direction; (1) the intruder is passing along a path where sensor nodes have been already deployed. (2) the intruders are crossing the path. (3) the intruders, who are moving as (1)'s scenario, are certainly deviating from the middle of the path. In conclusion, through the simulation results, we obtain the performance results in terms of latency and energy consumption, and analyze them. Finally, we validate our algorithm is highly able to adapt on such the application environments.

Design and Implementation of Geographical Handoff System Using GPS Information (GPS정보를 이용한 위치기반 핸드오프 시스템의 설계 및 구현)

  • Han, Seung-Ho;Yang, Seung-Chur;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.33-43
    • /
    • 2010
  • Recently, users want to use real-time multimedia services, such as internet, VoIP, etc., using their IEEE 802.11 wireless lan mobile stations. In order to provide such services, a handoff among access points is essential to support the mobility of a node, in such an wide area. However, the legacy handoff methods of IEEE 802.11 technology are easy to lose connections. Also, the recognition of a disconnection and channel re-searching time make the major delay of the next AP to connect. In addition, because IEEE 802.11 decides the selection of an AP depending only on received signal strength, regardless of a node direction, position, etc., it cannot guarantee a stable bandwidth for communication. Therefore, in order to provide a real-time multimedia service, a node must reduce the disconnection time and needs an appropriate algorithm to support a sufficient communication bandwidth. In this paper, we suggest an algorithm which predicts a handoff point of a moving node by using GPS location information, and guarantees a high transmission bandwidth according to the signal strength and the distance. We implemented the suggested algorithm, and confirmed the superiority of our algorithm by reducing around 3.7ms of the layer-2 disconnection time, and guaranteed 24.8% of the communication bandwidth.

5G Mobile Communications: 4th Industrial Aorta (5G 이동통신: 4차 산업 대동맥)

  • Kim, Jeong Su;Lee, Moon Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.337-351
    • /
    • 2018
  • This paper discusses 5G IOT, Augmented Reality, Cloud Computing, Big Data, Future Autonomous Driving Vehicle technology, and presents 5G utilization of Pyeongchang Winter Olympic Games and Jeju Smart City model. The reason is that 5G is the main artery of the 4th industry.5G is the fourth industrial aorta because 5G is the core infrastructure of the fourth industrial revolution. In order for the AI, autonomous vehicle, VR / AR, and Internet (IoT) era to take off, data must be transmitted several times faster and more securely than before. For example, if you send a stop signal to LTE, which is a communication technology, to a remote autonomous vehicle, it takes a hundredth of a second. It seems to be fairly fast, but if you run at 100km / h, you can not guarantee safety because the car moves 30cm until it stops. 5G is more than 20 gigabits per second (Gbps), about 40 times faster than current LTE. Theoretically, the vehicle can be set up within 1 cm. 5G not only connects 1 million Internet (IoT) devices within a radius of 1 kilometer, but also has a speed delay of less than 0.001 sec. Steve Mollenkov, chief executive officer of Qualcomm, the world's largest maker of smartphones, said, "5G is a key element and innovative technology that will connect the future." With 5G commercialization, there will be an economic effect of 12 trillion dollars in 2035 and 22 million new jobs We can expect to see the effect of creation.

A System for Change Management of Sensor Network Applications based on Version Synchronization (버전동기화 기반의 센서 네트워크 응용 소프트웨어 변경 관리 시스템의 구축 사례)

  • Kim, Jae-Cheol;Kim, Ju-Il;Chong, Ki-Won;Lee, Woo-Jin
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.125-134
    • /
    • 2009
  • This paper proposes a change management system of sensor network applications based on version synchronization that supports to effectively manage defect correction of applications, change of functions for applications or improvement of applications without suspending the sensor network. The proposed change management system consists of the NADE which is an application development environment, the Node Management Server, and the Node Agent. NADE is an Eclipse-based development environment for developing applications which are installed into nodes. NADE is also connected with CVSNT which is a version management tool and performs application version management using the CVSNT. Node Management Server manages nodes to maintain latest versions of applications by synchronizing versions of applications which are performed on the nodes with the versions of applications which are developed in the NADE. Node Agent which is loaded into the node periodically sends the version information of the application to the server, and stores and updates the version information of the application. Through the proposed change management system, applications of nodes are automatically updated when versions of applications are changed by correcting defects, changing functions or improving applications. Therefore, the user can effectively manage the execution of sensor network system without suspending or delaying the sensor network. Also, visibility of change management for sensor network applications will be improved.

A Study on Security Requirements for 5G Base Station (5G 기지국에 대한 보안성평가기준 연구)

  • Hong, Paul;Kim, Yejun;Cho, Kwangsoo;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.919-939
    • /
    • 2021
  • As a next-generation communication technology, 5G networks are capable of handling large amounts of traffic based on higher speeds, shorter communication delays, and higher connectivity compared to 4G networks. In this 5G network environment, base stations are installed all over the city at high density due to their characteristics, and are connected to user terminals to provide services. Therefore, if the base station is damaged by a malicious attacker, it is expected to cause great damage to users and society as a whole. So the need for secure communication equipment such as 5G base stations has emerged. Therefore, in this paper, we propose the security functional requirements derived using threat modeling, a systematic methodology for 5G base stations, and the security assurance requirements at the level that can cope with the backdoor issues. The security requirements proposed in this paper can be used for base station design and development to construct a secure network environment as a security evaluation standard for 5G base stations.

A Study on the Measures for Detection Error from the Displacement Distortion of the RADAR Waveform (레이더 전파의 왜곡현상에서 오는 탐지 오류 저감 방안 연구)

  • Kim, Jin Hieu;Kim, ChangEun;Lee, Yong-Soo
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • $21^{st}$ century is digitally civilized era. Technologies such as AI, Iot, Big Data, Mobile and etc makes this era digitally advanced. These advancement of the technology greatly impacted detection range of the radar. Human's eye sight can see about 20Km and hear 20 ~ 20000 Hz. These limitations can be overcome using radar. This radar technology is used in military, aircraft, ship, vehicle and etc. to replace human eye. However, radar technology is capable of making False Alarm Rate. This document will propose the fix of these problems. Radar's distortion includes beam refraction, diffraction and reflection. These inaccurate data result in deterioration of human judgements and my cause various casualties and damages. Radar goes through annual testing to test how many false alarm is being produced. Normal radar usually makes 10 to 20 False alarms. In emergency situation, if operator were to follow this false alarm, this might result in following false object or take 12 more seconds to follow the right object. This problem can be overcome by using different radar data from different places and angles. This helps reduces False Alarm rate and track the object twice as fast.

A study of Modeling and Simulation for Analyzing DDoS Attack Damage Scale and Defence Mechanism Expense (DDoS 공격 피해 규모 및 대응기법 비용분석을 위한 모델링 및 시뮬레이션 기술연구)

  • Kim, Ji-Yeon;Lee, Ju-Li;Park, Eun-Ji;Jang, Eun-Young;Kim, Hyung-Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.39-47
    • /
    • 2009
  • Recently, the threat of DDoS attacks is increasing and many companies are planned to deploy the DDoS defense solutions in their networks. The DDoS attack usually transmits heavy traffic data to networks or servers and they cannot handle the normal service requests because of running out of resources. Since it is very hard to prevent the DDoS attack beforehand, the strategic plan is very important. In this work, we have conducted modeling and simulation of the DDoS attack by changing the number of servers and estimated the duration that services are available. In this work, the modeling and simulation is conducted using OPNET Modeler. The simulation result can be used as a parameter of trade-off analysis of DDoS defense cost and the service's value. In addition, we have presented a way of estimating the cost effectiveness in deployment of the DDoS defense system.

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

Performance Evaluation of CoMirror System with Video Call and Messaging Function between Smart Mirrors (스마트 미러간 화상 통화와 메시징 기능을 가진 CoMirror 시스템의 성능평가)

  • Kitae Hwang;Kyung-Mi Kim;Yu-Jin Kim;Chae-Won Park;Song-Yeon Yoo;In-Hwan Jung;Jae-Moon Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2023
  • Smart mirror is an IoT device that attaches a display and an embedded computer to the mirror and provides various information to the user along with the mirror function. This paper presents performance evaluation of the CoMirror system as an extension of the previous research in which proposed and implemented the CoMirror system that connects Smart Mirrors using a network. First, the login performance utilizing face recognition was evaluated. As result of the performance evaluation, it was concluded that the 40 face images are most suitable for face learning and only one face image is most suitable for face recognition for login. Second, as a result of evaluating the message transmission time, the average time was 0.5 seconds for text, 0.63 seconds for audio, and 2.9 seconds for images. Third, as a result of measuring a video communication performance, the average setup time for video communication was 1.8 seconds and the average video reception time was 1.9 seconds. Finally, according to the performance evaluation results, we conclude that the CoMirror system has high practicality.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.