• Title/Summary/Keyword: 전방 압출

Search Result 33, Processing Time 0.021 seconds

Design of a Impeller Hub Cold Forging Process (토크 컨버터용 임펠러 허브의 냉간단조공정설계)

  • Kim, Young-Suk;Kim, Hyun-Soo;Kim, Chan-Il;Choi, Suk-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.213-219
    • /
    • 2000
  • A impeller hub is usually made through three forging processes : forward extrustion, upsetting and finishing. The finishing process is closed die forging in which the load increases abruptly at the final stage, resulting in underfilling in the finished product due to insufficient load capacity of the press. In this study, the rigid-plastic finite element analysis was applied to the impeller hub forging process in order to optimize process and to estimate required load. As a result, two kind of improvements for the process were suggested to reduce the load requirement in the finishing process.

  • PDF

An Upper-Bound Analysis of the Square-Die Forward Extrusion of Regular Polygonal-Shaped Tubes from hollow-Cylindrical Billets at Final Stage (중공 원형 소재로부터 다각형 튜브 제품의 평금형 전방 압출에 대한 최종단계의 상계해석)

  • Kim, Dong Kwon;Cho, Jong Rae;Bae, Won Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.91-97
    • /
    • 1995
  • In this study, a deformation model for the regular polygonal-shaped tubes from hollow-cylindrical billets is proposed and a kinematically admissible velocity field is obtained from this deformation model. The final stage upper-bound extrusion load and the average extruded length are determined by minimizing the total power consumption with respect to chosen parameters. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreement in average extruded height between theory and experiment.

  • PDF

경사부를 갖는 Al 7175 대형 플랜지 단조품의 복합성형공정 개발

  • 이경훈;은일상;이종억;정덕진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.219-226
    • /
    • 1996
  • 일반적으로 밀폐 형단조공정에서 약 10,000톤의 성형력이 필요한 직경이 540mm인 플랜지 형태의 알루미늄 7175 합금 단조품을 2,500톤 프레스에서 단조하기 위한 공정연구를 하였다. 장비의 성형력 부족을 극복하기 위하여 업셋단조와 기계가공 및 전방압출을 조합한 복합성형공정을 제안하였으며, 복합공정은 실제재료를 이용한 $\frac{1}{4}$ 축소 모델 실험과 유한 요소 해석으로 그 타당성이 판단되었고, 선정된 프레스에서 실물 크기의 플랜지 단조 가능성을 확인하였다.

  • PDF

A Study on the Forming Characteristics of Radial-Forward Extrusion Process (레이디얼-전방압출 공정의 성형특성에 관한 연구)

  • 황승규;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 2002
  • This study is concerned with the analysis of the forming characteristics of radial-forward extrusion. Angle between radial and forward extrusion, gap height, and friction factor are considered as important design factors to affect forming characteristics in radial-forward extrusion. The rigid-plastic finite element method is adopted to analyze the effects of design factors on forming loads. The incremental rates of loads are nearly constant except the deformation zone from radial to forward extrusion. The smaller angle induces lesser force increment, therefore forming load increases as the angle increases. Maximum load also increases as gap-height decreases and friction factor increases.

An Optimal Plane Strain and Axisymmetric Extrusions of Rate Sensitive Materials (변형율속도 제어에 의한 평면변형 및 축대칭 전방 압출)

  • Lee, Jong-Su;Hong, Seong-Seok;Jo, Nam-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.2
    • /
    • pp.116-121
    • /
    • 1992
  • The optimal extrusion process for the rate sensitive materials have been developed in this study. The preliminary designs of the die shapes have been carried out to maintain constant strain rate during extrusion and the upper bound approach has been applied to define the process variables (the die entrance velocity and the die length) including the rheology during deformation. The result for the axisymmetric extrusion process has been verified with rigid-viscoplastic finite element analysis. It has been confirmed that the optimal die has wider band of constant strain rate than the conical one does.

  • PDF

Comparision between Forward Extrusion and Upsetting Process for Preform with Stepped Shape (단 달림 형상의 예비성형체 성형에 대한 전방압출과 업셋팅 공정의 비교)

  • Song D. H.;Park Y. B.;Kim M. E.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.82-85
    • /
    • 2000
  • In cold forging, the final product is usually given by multi-stage process and the preform with stepped shape can be manufactured through the various forging method. The forward extrusion and upsetting processes for preform with stepped shape have been analyzed by using the rigid-plastic finite element analysis code, InteFORM and compared for load and stroke according to ae reduction of weを An engineer should select the proper processes considering the capacity and the stroke of the corresponding press in the forging of the preform with stepped shape.

  • PDF

유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구

  • 김태형;김병민;강범수;최재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.79-83
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created on extrusion or drawing processes. The process factors whichaffect the generation of defects are die semi-angle, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the prossibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of a round hole with process conditions suchas die semi-angle, reduction ratio of cross-sectional area and friction factorat the unsteady state of axi-symmetrical extrusion process when the round hole is alreadyexisted inside the original billet, and also, the effects of process factors are investigated to prevent the possible defects.

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 박용복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.76-79
    • /
    • 1999
  • The study has been performed for the relation between die and product in forward extrusion by the experiment. Strains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die and the history of the deformation of the die and product is given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension and shape of product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of product at unloading and ejected states. The study has given useful results for the deformation history of the die and product through the experiment and Lame's formula at forward extrusion for solid cylinder and can be applied to the die design for product with accurate dimension.

  • PDF

Ductile Fracture in Axisymmetric Extrusion Process (축대칭 전방 압출 공정에서의 연성파괴)

  • 최석우;이용신;오흥국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.29-37
    • /
    • 1996
  • A ductile fracture criterion, which has already proposed, namely, ($\Delta$1/1o)f at $\Delta$$\sigma$ m=(($\Delta$1/1o)f+(-1/tan$\theta$)$\Delta$$\sigma$m(where ($\Delta$1/1o)f is fracture elongation, $\Delta$$\sigma$m is mean stress variation) was made use of to study the working limit in axisymmetric extrusion. The present investigation is concerned with the application of theory on flow and fracture to the prediction of workability of materials in axisymmetric bar extrusion, with special reference to central bursting. The influenced of die geometry and manufacturing conditions on the central bursting are predicted.

  • PDF

Deformation History of Product during Forward Extrusion Process (전방압출 공정에서 제품 변형 이력)

  • 이강희;박용복
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.75-79
    • /
    • 2001
  • The study has been performed for the relation between die and product during forward extrusion by the experiment. Stains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die. The history of the deformation of the die and the product has been given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension as well as shape of the product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during the process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of the product at unloading and ejected states. In the present study, useful results for the deformation history of the die and the product were obtained through the experiment and Lame's formula in forward extrusion which can be applied to the die design for the product with accurate dimension.

  • PDF