• Title/Summary/Keyword: 전면

Search Result 2,242, Processing Time 0.031 seconds

Stability Analysis of Reinforced Retaining Wall with Steel Supported Face (강재지주 전면판 보강토 옹벽의 안정성 평가)

  • Kim, Ki Il;Kim, Byoung Il;Lee, Yeong Saeng;Lee, Soon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.75-82
    • /
    • 2011
  • Recently, a new reinforced retaining wall with light steel support face has been developed. In this study, full size in-situ test is carried out to investigate the stability of the new reinforced retaining wall. The lateral displacement of wall, lateral earth pressure, and settlement of the reinforced retaining wall are measured in the full size test. And numerical analysis by 3-D finite element method is also carried out to compare the test results with those of the analysis. From the full size in-situ test, the maximum lateral displacement of wall is 46mm(0.009H) and the maximum settlement is 21.5mm. And comparing these values with those of numerical analysis, it is confirmed that the new reinforced retaining wall with light steel support face is stable and applicable.

Effects of Facing Types and Construction Procedures on the Stability of Reinforced Earth Wall (전면벽 및 축조순서가 보강토옹벽의 안정성에 미치는 영향)

  • Lim Yu-Jin;Jung Jong-Hong;Park Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.119-126
    • /
    • 2004
  • A small-scale reinforced earth wall was constructed in a laboratory to investigate the effect of wall rigidity and of construction sequence on the wall. A full continuous wall facing and a discrete wall facing were designed and constructed for tests. These two different facing systems should adapt different construction procedures due to their different facing shapes. The model wall was built with geo-grid reinforcement, sand, and facings on rigid surface. The model wall was instrumented with earth pressure gages, LVDTs, and strain gages. The experimental results have shown differences in wall behavior related to construction sequence and types of wall facing. It is found in this study that the reinforced earth wall built with full continuous facing is safer than the reinforced earth wall built with the discrete wall facing.

Analysis and Design of Mat Foundation for High -Ribe Buildings (초고층 건물의 전면기초(MAT 기초) 해석 및 설계)

  • Hong, Won-Gi;Hwang, Dae-Jin;Gwon, Jang-Hyeok
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-70
    • /
    • 1995
  • Types of foundation of high rise buildings are primarily determined by loads transmitted from super structure, soil bearing capacity and available construction technology, The use of deep foundation of the buildings considered in this study due to the fact that rock of enough bearing capacity is not found down until 90~l00m. When a concentration of high soil pressure must be distributed over the entire building area, when small soft soil areas must be bridged, and when compressible strata are located at a shallow depth, mat foundation may be useful in order to have settlement and differential settlement of variable soils be minimized. The concept of mat foundation will also demonstrate some difficulties of applications if the load bearing demand directly carried down to the load -bearing strata exceeds the load -bearing capacity. This paper introduces both the analysis and design of mat type foundation for high rise buildings as well as the method-ology of modelling of the soil foundation, especially, engineered to redistribute the stress exceeding the soil bearing capacity. This process will result in the wide spread of stresses over the entire building foundation.

  • PDF

An Experimental Study on the Stability of Inclined Earth Retaining (지주식 흙막이의 안정성에 관한 실험적 연구)

  • Seo, Min-Su;Im, Jong-Chul;Jeong, Dong-Uk;Yoo, Jae-Won;Koo, Young-Mo;Kim, Gwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.99-110
    • /
    • 2012
  • Inclined Earth Retaining Structure Method (IER method, briefly) is developed in order to improve the existing earth retaining method. In IER method, there are three main structures, front support, back support, and head binding. Especially, back support acts the role that reduces the earth pressure acting on the front support. In this study, the stability according to the installation angle and stiffness of front or back support is analysed by model tests. By the test results, it is known that inclined back support is very effective to reduce the earth pressure acting on the front support. Especially, the effect of the stiffness and installation angle of back support is analysed.

Field Monitoring of Panel-type Reinforced Earth Walls Using Geosynthetic Strip Reinforcement with Folding Grooves (접힘홈이 형성된 띠형 섬유보강재를 사용한 패널식 보강토옹벽의 현장계측 연구)

  • Lee, Kwang-Wu;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.179-188
    • /
    • 2018
  • A new style of panel-type reinforced earth wall is a more integrated structure by connecting the geosynthetic strip reinforcement with a folding groove directly to the front panel through C-shaped insertion hole embedded in the panel. In this study, field measurements were conducted on two reinforced earth walls constructed at different sites to assess the field applicability and structural stability of the new style of panel-type reinforced earth wall. The horizontal displacement of the front panel, tensile deformation of the geosynthetic strip reinforcement, and horizontal earth pressure acting on the panel were measured and analyzed through the field measurements. According to the field measurements, after completion of the reinforced earth wall construction, the maximum horizontal earth pressure applied to the front panel was less than two-thirds of the Rankine earth pressure, and the maximum horizontal displacement of the front panel was less than 0.5% of the wall height, and the maximum tensile strain generated on the reinforcement was less than 1.0%. Therefore, it was found that two reinforced earth walls constructed at different sites remained stable.

Hydraulic and Numerical Tests on Wave Overtopping for Vertical Seawall with Relatively Shallow and Steep Sloped Water Depth (상대적으로 수심이 낮고 급한 전면 경사를 갖는 직립식 호안에서의 월파량 산정에 관한 수리 및 수치 실험)

  • Young-Taek, Kim;Hyukjin, Choi;Hwangki, Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.258-265
    • /
    • 2022
  • In Korea, the hydraulic model tests for measuring the wave overtopping have been almost conducted with no bottom slope or single slope condition in Korea. In this study, the bottom seabed for the coastal road area was fabricated at the wave flume and the wave overtopping was measured. The overtopping rate was also measured with the numerical modelling by OLAFoam. The measuring data were compared with EurOtop manual. It could be known the the influence of the foreslope in front of the vertical wall was significant and the these effects should be concerned when designing the coastal structures. And also it could be known that OLAFoam could be used to predict the wave overtopping rate for the complex bottom topography.

Improvement of Current Path by Using Ferroelectric Material in 3D NAND Flash Memory (3D NAND Flash Memory에 Ferroelectric Material을 사용한 Current Path 개선)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.399-404
    • /
    • 2023
  • In this paper, we analyzed the current path in the O/N/O (Oxide/Nitride/Oxide) structure of 3D NAND Flash memory and in the O/N/F (Oxide/Nitride/Ferroelectric) structure where the blocking oxide is replaced by a ferroelectric. In the O/N/O structure, when Vread is applied, a current path is formed on the backside of the channel due to the E-fields of neighboring cells. In contrast, the O/N/F structure exhibits a current path formed on the front side due to the polarization of the ferroelectric material, causing electrons to move toward the channel front. Additionally, we performed an examination of device characteristics considering channel thickness and channel length. The analysis results showed that the front electron current density in the O/N/F structure increased by 2.8 times compared to the O/N/O structure, and the front electron current density ratio of the O/N/F structure was 17.7% higher. Therefore, the front current path is formed more effectively in the O/N/F structure than in the O/N/O structure.

Crystalline lens'curvature change model by Accommdation (조절력에 따른 Crystalline Lens의 곡률 변화 모델)

  • Park, Kwang-Ho;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Curvature of Crystalline lens changes by Accommdation's change. When Accommdation gives force vertically to Crystalline lens that is elastic body, length increases for vertex direction. Density distribution and form of Crystalline lens that receive force lean to posterior surface, horizontal force of anterior surface direction is bigger more than horizontal force of posterior surface direction. But, if Accommdation begins to grow more than threshold value, expansity reaches in limit on anterior surface. This time, horizontal force of posterior surface direction is great mored more than horizontal force of anterior surface direction, thickness of posterior surface direction increases because is more than anterior surface direction. Anterior and posterior relationship thickness change difference accomplish the 2-nd funtional line(${\Delta}=B_1D+B_2D^2$) about Accommdation. Thickness (${\Delta}t_a$, ${\Delta}t_p$) difference change curved line of anterior pole-border and border-posterior pole by Accommdation is expressed as following. $${\Delta}t_a=t_a-t_{ao}=t_{max}+t_0{\exp}(-A/B)-t_{ao}$$ $${\Delta}t_p=t_p-t_{po}=t_{min}+t_0{\exp}(A/B)-t_{po}$$ The Parameter value that save in human's Crystalline lens obtain $t_{min}=1.1.06$, $t_0=-0.33$, B=9.32 in anterior, and $t_{max}=1.97$, $t_0=0.10$, B=7.96 etc. in posterior. Vertex curvature radius' change is as following Crystalline lens' anterior and posterior by Accommation $$R=R_0+R_1{\exp}(D/k)$$ The Parameter value that save in human's Crystalline lens obtain $R_{min}=5.55$, $R_1=6.87$, k=4.65 in anterior, and $R_{max}=-68.6$, $R_1=76.7$, k=308.5 in posterior, respectively.

  • PDF

Effect of Soil Mulching Materials and Methods on Weed Occurring for the Growth and Flowering in Gypsophila paniculata Cultivation (토양피복에 따른 잡초발생과 안개초의 생육 및 개화에 미치는 영향)

  • Cheong, Dong-Chun;Oh, Jeong-Moon;Lim, Hoi-Chun;Song, Young-Ju;Kim, Jeong-Man
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • This study investigated the effect of soil mulching materials and methods on weed occurring for the growth and flowering characteristics in Gypsophila plants cultivation. For mulching materials were used black polyethylene (PE) film, black polypropylene (PP), and green polypropylene, and these were mulched in both ridge and furrow (BRF) or only furrow, respectively. The weed was occurred total $146.2g/m^2/yr$ as dry weight in non-mulching, but $4.1{\sim}4.2g/m^2/yr$ in BRF mulching by black or green PP. Also weed control were yearly required 27.9 persons/10a in non-mulching, whereas 2.4 persons/10a in BRF mulching by black or green PP. Flower budding and blooming were roughly delayed in non-mulching and furrow mulching. Flowering characteristics such as flower stalk length, primary branches number, and stem firmness were remarkably improved in BRF mulching of black or green PP. Cut flower yield was increased on black BRF mulching or green PP in summer cultivation, while green PP BRF mulching showed better yield in in autumn cultivation. Mortality rate of Gypsophila plants after summer season was lowest as 12.4% in furrow mulching with black PP, followed by about 19.0% in green PP mulching, but highest as 39.0% in BRF mulching with black PE film. Rosette formation rate was lower in furrow than BRF mulching, and was lowest as 13.1% in BRF mulching with green PP, followed by 15.2~15.8% in BRF mulching with black PE film or black PP. So it was thought that BRF mulching with green PP was highly effective in weed control and improvement of yield and cut flower quality in Gypsophila plants cultivation.

An Experimental Study on the Local Scour According to the shapes of Piers (교각형태에 따른 교각주변의 국소세굴 형상에 관한 실험적 연구)

  • Choi, Hong-Yun;Roh, Kyong-Bum;Jin, Young-Hoon;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1601-1604
    • /
    • 2006
  • 본 연구는 교각주위에 발생하는 국소 세굴의 특성을 파악하기 위해 세굴공의 형태, 범위, 최대세굴심의 특성을 분석하였으며, 이를 위한 교각 형태의 변화에 따른 교각주위의 국소세굴 변화 양상에 관한 실험을 수행 하였다. 정적세굴조건을 유지하면서 평형상태에 도달한 후 전형적인 세굴공의 형태는 교각전면부에서 반원이고, 교각후면부에서는 반타원의 형태를 나타내었으며, 교각형상으로 인한 상대세굴심은 마름모일 때 가장 크게 나타났다. 최대 세굴심은 흐름이 교각과 부딪쳐서 하강류가 발생하는 지점인 교각전면부에 발생되었다. 이는 하강류가 교각 전면부에 세굴공으로부터 하상물질을 세굴공 외부로 이송시키는 역할을 하기 때문으로 판단된다. 마지막으로 본 실험을 통해 교각 후면부의 하류구간에서 교각에 의해 교란된 물의 흐름의 영향으로 인한 세굴공의 형상을 분석하여 보면 세굴공의 경사가 후면부에서는 완만하게 형성되어 있었고, 하류구간에는 세굴공에서 침식, 이동된 토사가 퇴적되어 하상이 원 하상고보다 높게 형성된 것을 관찰할 수 있었다.

  • PDF