• Title/Summary/Keyword: 전력 관리 기법

Search Result 385, Processing Time 0.028 seconds

Workload-Driven Adaptive Log Block Allocation for Efficient Flash Memory Management (효율적 플래시 메모리 관리를 위한 워크로드 기반의 적응적 로그 블록 할당 기법)

  • Koo, Duck-Hoi;Shin, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.90-102
    • /
    • 2010
  • Flash memory has been widely used as an important storage device for consumer electronics. For the flash memory-based storage systems, FTL (Flash Translation Layer) is used to handle the mapping between a logical page address and a physical page address. Especially, log buffer-based FTLs provide a good performance with small-sized mapping information. In designing the log buffer-based FTL, one important factor is to determine the mapping structure between data blocks and log blocks, called associativity. While previous works use static associativity fixed at the design time, we propose a new log block mapping scheme which adjusts associativity based on the run-time workload. Our proposed scheme improves the I/O performance about 5~16% compared to the static scheme by adjusting the associativity to provide the best performance.

Grid-Based Key Pre-Distribution for Factory Equipment Monitoring (공장 설비 모니터링을 위한 그리드 기반 키 선분배 기법)

  • Cho, YangHui;Park, JaePyo;Yang, SeungMin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.147-152
    • /
    • 2016
  • Wireless sensor networks that are easy to deploy and install are ideal for building a system that monitors the condition of the equipment in a factory environment where wiring is difficult. The ZigBee has characteristics of low price and low power compared with other wireless communication protocols and is suitable for a monitoring system requiring a plurality of nodes. ZigBee communication requires encryption security between devices because all protocol layers are based on OTM trusted by each other. In the communication between nodes, node authentication must be guaranteed and exposure of confidential information managed by each node should be minimized. The facilities of the factory are regular and stationary in distribution location. In order to protect the information gathered from the sensor in the factory environment and the actuator control information connected to the sensor node, we propose a cryptosystem based on the two - dimensional grid - based key distribution method similar to the distribution environment of the facility.

Adaptive Garbage Collection Policy based on Analysis of Page Ratio for Flash Memory (플래시 메모리를 위한 페이지 비율 분석 기반의 적응적 가비지 컬렉션 정책)

  • Lee, Soung-Hwan;Lee, Tae-Hoon;Chung, Ki-Dong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.422-428
    • /
    • 2009
  • NAND flash memory is widely used in embedded systems because of many attractive features, such as small size, light weight, low power consumption and fast access speed. However, it requires garbage collection, which includes erase operations. Erase operation is slower than other operations. Further, a block has a limited erase lifetime (typically 100,000) after which a block becomes unusable. The proposed garbage collection policy focuses on minimizing the total number of erase operations, the deviation value of each block and the garbage collection time. NAND flash memory consists of pages of three types, such as valid pages, invalid pages and free pages. In order to achieve above goals, we use a page ratio to decide when to do garbage collection and to select the target victimblock. Additionally, we implement allocating method and group management method. Simulation results show that the proposed policy performs better than Greedy or CAT with the maximum rate 85% of reduction in the deviation value of the erase operations and 6% reduction in garbage collection time.

Research on 5G Base Station Evaluation Method through Electromagnetic Wave Intensity Prediction Model (전자파 강도 예측 모델을 통한 5G 기지국 평가 기법 연구)

  • Lee, Yang-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.558-564
    • /
    • 2021
  • With the recent introduction of 5G, electromagnetic radiation sources are spreading throughout life, so it is necessary to establish a citizen-centered electromagnetic safety management system. In particular, the beamforming method of the 5G antenna increases the power density measurement of electromagnetic waves by more than 10 times when the wireless base station is installed, so it is unreasonable to determine the safety by physical measurement. Therefore, it is necessary to determine the presence or absence of electromagnetic wave safety in daily life through a predictive method by calculation through systematic model analysis. In this paper, in order to check the possibility of a 5G wireless base station using an electromagnetic wave numerical analysis tool as a way to solve this problem, we compared the measured values of the actual base stations and the predicted values through the prediction model to compare the reliability. A method of constructing a real-time base station electromagnetic wave strength prediction evaluation system combined with software was also proposed.

A Study on Authentication Management and Communication Method using AKI Based Verification System in Smart Home Environment (스마트 홈 환경에서 AKI기반 검증 시스템을 활용한 인증관리 및 통신 기법에 관한 연구)

  • Jin, Byung Wook;Park, Jung Oh;Jun, Moon Seog
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.25-31
    • /
    • 2016
  • With the development of IOT technology and the expansion of ICT services recently, a variety of home network services have been advanced based on wired and wireless high speed telecommunication. Domestic and global companies have been studying on the innovative technology for the users using IOT based technology and the environment for the smart home services has been gradually developed. The users live their lives with more convenience due to the expansions and developments of smart phones. However, the threatening on the security of the smart home network had occurred by various attacks with the connection to the smart environment telecommunication, lack of applications on low powered and light weight telecommunication, and the problems of security guideline. In addition, the solutions are required for the new and variant attacking cases such as data forgery and alteration of the device for disguising approach with ill will. In this article, the safe communication protocol was designed using certification management technique based on AKI which supplemented the weakness of PKI, the existing certification system in the smart environment. Utilizing the signature technique based on ECDSA, the efficiency on the communication performance was improved, and the security and the safety were analyzed on the security threat under the smart home environment.

Clustering based Novel Interference Management Scheme in Dense Small Cell Network (밀집한 소형셀 네트워크에서 클러스터링 기반 새로운 간섭 관리 기법)

  • Moon, Sangmi;Chu, Myeonghun;Lee, Jihye;Kwon, Soonho;Kim, Hanjong;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.13-18
    • /
    • 2016
  • In Long Term Evolution-Advanced (LTE-A), small cell enhancement(SCE) has been developed as a cost-effective way of supporting exponentially increasing demand of wireless data services and satisfying the user quality of service(QoS). However, there are many problems such as the transmission rate and transmission quality degradation due to the dense and irregular distribution of a large number of small cells. In this paper, we propose a clustering based interference management scheme in dense small cell network. We divide the small cells into different clusters according to the reference signal received power(RSRP) from user equipment(UE). Within a cluster, an almost blank subframe(ABS) is implemented to mitigate interference between the small cells. In addition, we apply the power control to reduce the interference between the clusters. Simulation results show that proposed scheme can improve Signal to Interference plus Noise Ratio(SINR), throughput, and spectral efficiency of small cell users. Eventually, proposed scheme can improve overall cell performance.

Column-aware Transaction Management Scheme for Column-Oriented Databases (컬럼-지향 데이터베이스를 위한 컬럼-인지 트랜잭션 관리 기법)

  • Byun, Si-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 2014
  • The column-oriented database storage is a very advanced model for large-volume data analysis systems because of its superior I/O performance. Traditional data storages exploit row-oriented storage where the attributes of a record are placed contiguously in hard disk for fast write operations. However, for search-mostly datawarehouse systems, column-oriented storage has become a more proper model because of its superior read performance. Recently, solid state drive using MLC flash memory is largely recognized as the preferred storage media for high-speed data analysis systems. The features of non-volatility, low power consumption, and fast access time for read operations are sufficient grounds to support flash memory as major storage components of modern database servers. However, we need to improve traditional transaction management scheme due to the relatively slow characteristics of column compression and flash operation as compared to RAM memory. In this research, we propose a new scheme called Column-aware Multi-Version Locking (CaMVL) scheme for efficient transaction processing. CaMVL improves transaction performance by using compression lock and multi version reads for efficiently handling slow flash write/erase operation in lock management process. We also propose a simulation model to show the performance of CaMVL. Based on the results of the performance evaluation, we conclude that CaMVL scheme outperforms the traditional scheme.

Index Management Method using Page Mapping Log in B+-Tree based on NAND Flash Memory (NAND 플래시 메모리 기반 B+ 트리에서 페이지 매핑 로그를 이용한 색인 관리 기법)

  • Kim, Seon Hwan;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.1-12
    • /
    • 2015
  • NAND flash memory has being used for storage systems widely, because it has good features which are low-price, low-power and fast access speed. However, NAND flash memory has an in-place update problem, and therefore it needs FTL(flash translation layer) to run for applications based on hard disk storage. The FTL includes complex functions, such as address mapping, garbage collection, wear leveling and so on. Futhermore, implementation of the FTL on low-power embedded systems is difficult due to its memory requirements and operation overhead. Accordingly, many index data structures for NAND flash memory have being studied for the embedded systems. Overall performances of the index data structures are enhanced by a decreasing of page write counts, whereas it has increased page read counts, as a side effect. Therefore, we propose an index management method using a page mapping log table in $B^+$-Tree based on NAND flash memory to decrease page write counts and not to increase page read counts. The page mapping log table registers page address information of changed index node and then it is exploited when retrieving records. In our experiment, the proposed method reduces the page read counts about 61% at maximum and the page write counts about 31% at maximum, compared to the related studies of index data structures.

A Study on IoT/LPWA-based Low Power Solar Panel Monitoring System for Smart City (스마트 시티용 IoT/LPWA 기반 저전력 태양광 패널 모니터링 시스템에 관한 연구)

  • Trung, Pham Minh;Mariappan, Vinayagam;Cha, Jae Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.74-82
    • /
    • 2019
  • The revolution of industry 4.0 is enabling us to build an intelligent connection society called smart cities. The use of renewable energy in particular solar energy is extremely important for modern society due to the growing power demand in smart cities, but its difficult to monitor and manage in each buildings since need to be deploy low energy sensors and information need to be transfer via wireless sensor network (WSN). The Internet of Things (IoT) / low-power wide-area (LPWA) is an emerging WSN technology, to collect and monitor data about environmental and physical electrical / electronics devices conditions in real time. However, providing power to IoT sensor end devices and other public electrical loads such as street lights, etc is an important challenging role because the sensor are usually battery powered and have a limited life time. In this paper, we proposes an efficient solar energy-based power management scheme for smart city based on IoT technology using LoRa wide-area network (LoRaWAN). This approach facilitates to maintain and prevent errors of solar panel based energy systems. The proposed solution maximizing output the power generated from solar panels system to distribute the power to the load and the grid. In this paper, we proved the efficiency of the proposed system with Simulink based system modeling and real-time emulation.

Evaluation of Edge-Based Data Collection System through Time Series Data Optimization Techniques and Universal Benchmark Development (수집 데이터 기반 경량 이상 데이터 감지 알림 시스템 개발)

  • Woojin Cho;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.453-458
    • /
    • 2024
  • Due to global issues such as climate crisis and rising energy costs, there is an increasing focus on energy conservation and management. In the case of South Korea, approximately 53.5% of the total energy consumption comes from industrial complexes. In order to address this, we aimed to improve issues through the 'Shared Network Utility Plant' among companies using similar energy utilities to find energy-saving points. For effective energy conservation, various techniques are utilized, and stable data supply is crucial for the reliable operation of factories. Many anomaly detection and alert systems for checking the stability of data supply were dependent on Energy Management Systems (EMS), which had limitations. The construction of an EMS involves large-scale systems, making it difficult to implement in small factories with spatial and energy constraints. In this paper, we aim to overcome these challenges by constructing a data collection system and anomaly detection alert system on embedded devices that consume minimal space and power. We explore the possibilities of utilizing anomaly detection alert systems in typical institutions for data collection and study the construction process.