• Title/Summary/Keyword: 전달행렬법

Search Result 112, Processing Time 0.024 seconds

Analysis and Improvement for Performance of the Muffler of a Tracter (트랙터 소음기의 성능해석 및 개선에 관한 연구)

  • 이규태;도중석;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.151-159
    • /
    • 1998
  • The heavy equipment such as tracter has been studied to improve rather the performance of engine than comfort. The mufflers of tracters have various specifications according to their uses. The exact analysis of various mufflers is needed to reduce the level of exhaust moise, a major noise source of engine, to improve the ride quality of tracter. In this study, a software based on Green's function is developed to predict the performance of sound transmission loss for a muffler according to the locations of inlet/outlet pipes. The locations of inlet and outlet pipes can be fixed at different position individually. The conventional muffler has the locations of inlet/outlet pipes on the direction of longitudinal axes. On other hand, the inlet and outlet pipes may be located at the circumferential surface of a test muffler such as one of tracter. The software is verified by analysis and experiment on current muffler of tracter and the improvement technique is proposed to reduce the level of exhaust noise.

  • PDF

Evaluation method of isolation performance for MIMO isolation table using singular value of transmissibility matrix (전달율 행렬의 특이치를 이용한 다입력/다출력 제진대계의 절연성능 평가법)

  • Sun, Jong-Oh;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.324-329
    • /
    • 2012
  • Isolation tables are widely used for precision equipments and their isolation performances have been usually expressed and evaluated by transsmissibility. However, transmissibility is a concept for 1-degree of freedom(DOF) system. In practice, isolation tables are supproted by more than 4 springs. Each spring is subjected to vertical and horizontal ground vibrations, and also the table has more than 1-DOF. Therefore, isolation tables should be treated as multi-input/multi-output(MIMO) system of which isolation performance is expressed by transmissibility matrix. However, the matrix is too complicated to be an index for a system. In this paper, maximum singular value of transmissibility matrx is suggested as a simple performance index of a MIMO isolation system. Physical meaning of singular value is explained using a simple a 2-DOF isolation table. Furthermore, maximum singular values of passive, 3-DOF active and 6-DOF active isolation tables are obtained through experiments, and their meaning are explained and compared with each other.

  • PDF

Vibration Characteristics of Pipe Element Containing Moving Medium by a Transfer Matrix (전달행렬을 이용한 유동매체를 가진 배관요소의 진동특성 분석)

  • 이영신;천일환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.366-375
    • /
    • 1991
  • In this study, vibrational behavior of uniform pipe carrying a moving medium is studied by using a transfer matrix and the displacement function derived from the conventional beam theory. In various boundary conditions, flow velocity and mechanical property change of the variation of natural frequency are investigated. The Coriolis term in the original differential equation of motion has been ignored in the investigation. This method is used to study the variation of natural frequency with flow velocity for clamped-clamped, cantilevered, clamped-pinned, pinned-pinned, free-free straight pipe element. It is shown that clamped-clamped, free-free pipe have the highest natural frequency and critical velocity values while cantilevered pipe have the smallest natural frequency for the same mechanical properties. From the vibration effects of mechanical property variation, it is shown that bending stiffness and pipe length variation has large influence on natural frequency and critical velocity. Since the order of transfer matrix is not changed with boundary conditions of pipe element, this method proposed can be easily applied to personal-computer for vibration analysis of pipe element. Furthermore, this method can be extended to three-dimensional system by using a coordinate transformation for the analysis of piping systems.

An Application of the Instrumental Variable Method(IVM) to a Parameter Identification of a Noise Contaminated Bearing Test Rig (IV 방법을 이용한 잡음이 포함된 베어링 실험 장치의 동특성 파라미터 추출)

  • 이용복;김창호;최동훈
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.679-684
    • /
    • 1996
  • The Instrumental Variable Method(IVM), modified from least square algorithm, is applied to parameter identification of a noise contaminated bearing test rig. The signal to noise ratio included in Frequency Response Function(FRF) can cause significant errors in parameter identification. Therefore, among several candidates of parameter identification method, results of the applied IVM were compared with noise-contaminated least square method. This study shows that the noise-contaminated least square method can have indonsistent accuracy depending on the degree of noise level, while the IVM has robuster performance to signal to noise ratio than least square method.

  • PDF

Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석)

  • 문덕홍;최명수;강화중
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

Development of silencer for apartment floor between bathroom noise (공동주택 화장실 층간 소음 저감기 개발)

  • Kim, Young-Su;Lee, Jae-Kuck;Kim, Chang-Yeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.715-721
    • /
    • 2008
  • 공동주택에서의 음환경 성능은 실내환경의 질과 연관시켜 설계단계부터 충분한 검토가 필요한 성능항목이다. '국토해양부'는 '공통주택 성능등급 표시제도'에서 Air Duct를 통해 상하층간 전파되는 소음을 제어하기 위한 대책을 요구하고 있다. 이에 화장실에 적합한 구조 및 재질로 소음 저감기를 개발하고, 소음기 성능평가 장치를 구성하여 이론과 비교평가하고, 실제 현장에 설치 시 적용효과를 분석하였다.

  • PDF

Prediction and Measurement of Sound Transmission Loss for Multi-layered Acoustical Materials (다중층 음향 재료의 투과손실 예측과 측정)

  • Park, So-Hee;Park, Chul-Min;Chae, Ki-Sang;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1013-1020
    • /
    • 2007
  • In this paper, the predictions and measurements of sound transmission loss(STL) are discussed for various types of acoustical materials and carpets. Random incidence sound transmission losses are measured by the sound intensity method. The in-house software HONUS2005 is used to predict TL and estimate the various physical properties such as the flow resistivity, the structure factor, the porosity, the Possion's ratio, and etc. After this estimation, various multi-layered materials with a steel plate are measured and predicted. In particular, Carpets are assumed to be membranes to predict acoustical performance. To confirm this assumption, double and triple-layered cases are also observed including two different kinds of carpets.

Parametric Sensitivity Analysis Using Fourier Transformation (푸리에 변환을 이용한 파라미터 민감도 해석)

  • Baek, Moon-Yeal;Lee, Kyo-Seung
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.58-64
    • /
    • 2005
  • 주파수 영역 민감도 해석법은 동적 시스템의 전달함수에 대한 설계 파라미터의 변화에 의한 효과를 파악하기 위해 사용되어 왔으며, 이때의 민감도 함수는 시스템 설계 파라미터에 대한 시스템 전달 함수의 편미분 값이다. 일반적으로 종래의 주파수 영역 민감도 해석은 직접 미분법이나 라플라스 변환이 사용되어 왔다. 라플라스 변환을 사용하는 경우에 시스템의 차수가 증가할수록 역행렬 조작은 매우 많은 시간을 필요로 하며 또한 어려운 작업이다. 본논문에서는 이러한 다점을 보완하기 위하여 푸리에변환을 이용한 민감도 기법을 제시하였다. 파라미터의 변화에 대한 진폭-주파수 특성의 민감도 해석을 간단한 2자유도 모델과 로터 다이나믹 시스템에 적용하였다.

  • PDF

On Development of Vibrational Analysis Algorithm of Cylindrical Shell Structures With Stiffeners (보강재를 갖는 원통셸 구조물의 진동해석 알고리즘의 개발에 관한 연구)

  • 문덕홍;여동준
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.481-491
    • /
    • 1996
  • In this paper, we formulated algorithm for free vibration analysis of cylindrical shells with stiffeners by applying the transfer influence coefficient method. This was developed as a vibration analysis method suitable for using personal computer(PC). The simple computational results form PC demonstrated the validity of the present algorithm, that is, the computational high accuracy and speed, and the flexibility of programming. We compared with results of the transfer matrix method and the reference. We also confirmed that the present algorithm could provide the solutions of high accuracy for system with a lots of intermediate rigid supports and stiffeners. And all boundary conditions and the intermediate stiff supports between shell and foundation could be treated only by adequately varying the values of the spring constants.

  • PDF

The Robust Design of Low Noise Intake System with Experimental 4-poles (실험 4단자정수를 이용한 저소음 흡기계의 강건 최적 설계)

  • Joe, Yong-Goo;Oh, Jae-Eung;Lee, You-Yub;Kim, Heung-Seob
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.405-412
    • /
    • 2002
  • Recently, regulations of the government and concerns of people give rise to the interest in exhaust and intake noise of passenger car as much as other vehicles. In these demands, performance prediction software with hybrid method was developed at first. Secondly, robust design was used for improving the noise reduction capacity of intake system with the performance prediction software. On the basis of the existing design, length and radios of each component that was thought to effect on the capacity of intake system was selected. The factors were arranged by using L18 table of orthogonal array and optimum value was obtained.