• Title/Summary/Keyword: 전단 파단

Search Result 155, Processing Time 0.03 seconds

Evaluation of Limit Loads for Circumferentially Cracked Pipes Under Combined Loadings (원주방향 표면 결함이 존재하는 배관에 가해지는 비틀림을 포함한 복합하중에 대한 한계하중식 제시)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.453-460
    • /
    • 2015
  • Since the Fukushima nuclear accident, several researchers are extensively studying the effect of torsion on the piping systems In nuclear power plants. Piping installations in power plants with a circumferential crack can be operated under combined loading conditions such as bending and torsion. ASME Code provides flaw evaluations for fully plastic fractures using limit load criteria for the structural integrity of the cracked pipes. According to the recent version of Code, combined loadings are provided only for the membrane and bending. Even though actual operating conditions have torsion loading, the methodology for evaluating torsion load is not established. This paper provides the results of limit load analyses by using finite element models for circumferentially cracked pipes under pure bending, pure torsion, and combined bending and torsion with tension. Theoretical limit load solutions based on net-section fully plastic criteria are suggested and verified with the results of finite element analyses.

Effect of Process Aids on Rheological and Mechanical Properties of Styrene-Butadiene Rubber Compound (가공조제가 Styrene-Butadiene Rubber 배합고무의 유변특성 및 기계적 물성에 미치는 영향)

  • Kang, Yong-Gu;Jung, Hoon;Kim, Tae-Nyun;Kim, Wan-Doo;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.170-176
    • /
    • 2002
  • Effects of type and loading level of process aids on the rheological and mechanical properties of styrene-butadiene rubber (SBR) compound were investigated. Five commercial grades of process aids composed of fatty acids and their various derivatives such as metal salts, esters, alcohols and amides were selected. The reduction in Mooney and shear viscosities was higher for metal salt-type process aids but lower for the process aids containing high molecular weight fatty acid alcohols and esters with increasing the loading of process aids. Tensile modulus generally decreased, while heat-build-up increased with increased process aids content. No considerable effect was observed for ulimate properties such as tensile strength and elongation at break.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Bond Capacity of Pseudo-Ductile FRP Hybrid Sheet to Strengthen RC Members (철근콘크리트 부재 보강용 유사연성 FRP 하이브리드 시트의 부착 특성)

  • Yoon, Hye-Sun;Lee, Jung-Mi;Lee, Chin-Yong;Choi, Dong-Uk;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • 12 concrete blocks, on which hybrid fibrous sheets (carbon fiber and glass fiber) had been bonded, were subjected to tensile load in order to estimate properties of the bonded interface. the sheet length was varied by 100mm, 200mm and 400mm. It was found that more than 150mm bond length is required to achieve the maximum bearing capacity of the interface. In this study, maximum bond stress $\tau_{F,max}$, ultimate slip $S_{FU}$ of the interface were estimated $\tau_{F,max}$=3.0MPa and $S_{FU}$= 0.175mm, respectively.

Seismic Performance Assessment of Roof-Level Joints with Steel Fiber-Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트를 적용한 최상층 접합부의 내진성능 평가)

  • Kim, Sang-Hee;Kwon, Byung-Un;Kang, Thomas H.-K.
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • This study was conducted to verify seismic performance of special moment frame's joints at roof-level with high-strength concrete and SD600 bars. K-RC-H was designed according to the seismic code and K-HPFRC-H had 150% of the original hoop spacing and 1.0% steel fiber volume fraction compared with K-RC-H. Both specimens had remarkable seismic performance without noticeable decrease in moment, but with very good energy dissipation before rebar failure. The U-bars in the joint sufficiently constrained rebar's action that pushed the cover upward. SD600 bars with $1.25l_{dt}$ had minimum slip in the joint. It was considered that the steel fiber contributed to improvement of the bending moment and joint shear distortion, and the result showed that it would be possible to increase the hoop spacing to 150% of the regular spacing.

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF

Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring (복합재 판스프링의 재료특성에 따른 스프링 강성변화와 초기 파단하중 예측)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1345-1350
    • /
    • 2014
  • This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels (인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가)

  • Park, Sang-Soon;Choi, Young-Min;Nam, Dae-Geun;Kim, Young-Seok;Yu, Ji-Hun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.

Tenderness Improvement and Utilization of Low Quality Meat by High Temperature Aging (고온숙성에 의한 저급육의 연도개선과 그 이용)

  • Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.549-555
    • /
    • 1989
  • The effect of high temperature aging on the meat tenderness improvement was studied, and also the effect of salt, pyrophosphate and succinic anhydride on binding characteristics of restructed beef were compared. At high temperature aging, shear force value decreased and myofibrillar fragmentation index increased as the aging progressed. From the electronic microscopic observation, the morphological change of myofibril appeared much faster when the meat was aged at high temperature. Added salt increased TBA values and rupture strength while reducing cooking loss. Increase in pyrophosphate decreased rooking loss and Increased rupture strength and TBA value. When salt and pyrophosphate were combined, the effects were somewhat additive. Added succinic anhydride increased cooking loss and hardness and decreased color rating, acceptability rating and adhesiveness, but cohessiveness was not significantly different from control group containing salt and pyrophosphate. The results suggest that high temperature aging have greater improving effect of meat tenderness of Korean native male cattle compared to low temperature aging and addition of succinic ahydride in combination with salt and pyrophosphate reduce binding ability of restructured beef.

  • PDF

Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites (현무암섬유 섬유 배향에 따른 현무암섬유 강화 복합재료의 기계적 계면특성 영향)

  • Kim, Myung-Seok;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.219-224
    • /
    • 2015
  • In this work, the effect of fiber array direction including $0^{\circ}$, $0^{\circ}/90^{\circ}$, $0^{\circ}/45^{\circ}/-45^{\circ}$ was investigated for mechanical properties of basalt fiber-reinforced composites. Mechanical properties of the composites were studied using interlaminar shear strength (ILSS) and critical stress intensity factor ($K_{IC}$) measurements. The cross-section morphologies of basalt fiber-reinforced epoxy composites were observed by scanning electron microscope (SEM). Also, the surface properties of basalt fibers were determined by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). From the results, it was observed that acid treated basalt fiber-reinforced composites showed significantly higher mechanical interfacial properties than those of untreated basalt fiber-reinforced composites. These results indicated that the hydroxyl functional groups of basalt fibers lead to the improvement of the mechanical interfacial properties of basalt fibers/epoxy composites in the all array direction.