• Title/Summary/Keyword: 전단 수정 계수

Search Result 67, Processing Time 0.023 seconds

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

A Comparative Study on Constitutive Equations of Human Blood (인체혈액의 구성방정식에 관한 비교연구)

  • 서상호
    • The Korean Journal of Rheology
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • 인체 동맥혈관내 혈액의 유동현상을 수치적으로 해석하기 위해서는 혈액의 유변학 적 성질을 구성방정식으로 나타내어야한다. 본 연구에서는 혈액의 점성계수를 표현하기 위 하여 비뉴턴유체의 점성을 나타내는 식으로서 Carreau 모델, 수정 Cross 모델, 수정 Powell-Eyring 모델과 수정멱법칙모델을 사용하였고 원형관내 혈액의 정상유동을 수치모사 하기 위하여 겉보기점성계수를 이용하는 구성방정식을 운동량방정식에 적용하였다. Carreau 모델과 수정멱법칙모델을 적용할 때 레이놀즈수의 변화가 중심선상의 속도와 길이방향의 압 력변화에 미치는 영향을 고찰하였다. 전단율이 높은영역에서 혈액의 겉보기점성계수를 효과 적으로 나타낼수 있는 수정멱법칙모델을 제시하였다.

  • PDF

A Simple Modification of the First-order Shear Deformation Theory for the Analysis of Composite Laminated Structures (복합적층구조해석을 위한 1차전단변형이론의 간단한 수정방안)

  • Chun, Kyoung-Sik;Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.475-481
    • /
    • 2011
  • In this study, a simplified method of improving not only transverse shear stress but also shear strain based on the first-order shear deformation theory was developed. Unlike many established methods, such as the higher-order shear deformation and layerwise theories, this method can easily apply to finite elements as only $C^0$ continuity is necessary and the formulation of equations is very simple. The basic concept in this method, however, must be corrected:the distribution of the transverse shear stresses and shear strains through the thickness from the formulation based on the higher-order shear deformation theory. Therefore, the shear correction factors are no longer required, based on the first-order shear deformation theory. Numerical analyses were conducted to verify the validity of the proposed formulations. The solutions based on the simplified method were in very good agreement with the results considering the higher-order shear deformation theory.

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.

Theoretical Analysis for the Measurement of Viscosity and Shear Modulus of Viscoelastic Fluids by Using a Quartz Crystal Oscillator (수정진동자를 사용한 점탄성 유체의 점성계수와 전단 탄성계수 측정에 관한 이론해석)

  • Suh, Yong-Kweon;Kim, Young-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.487-496
    • /
    • 2008
  • Quartz crystal oscillator is frequently used in measuring a very small amount of mass attached to or adsorbed on the surface of an electrode on the quartz plate. The physical principle is that the resonance frequency of the shear vibration of the quartz caused by an applied electric field is a function of the mass. Recently, effort has been tried to measure physical properties of viscoelastic fluids, such as viscosity and shear modulus. This paper presents useful formula that can be used in estimating the properties of viscoelastic fluids. Important finding in this analysis is that the formula can produce multiple values for the physical properties of the viscoelastic materials.

Characterization of the Three Dimensional Roughness of Rock Joints and Proposal of a Modified Shear Strength Criterion (암석 절리의 3차원 거칠기 특성화와 수정 전단강도 관계식의 제안)

  • Jang, Bo-An;Kim, Tae-Ho;Jang, Hyun-Sick
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2010
  • Surface roughness profiles were measured from 19 joint samples using a laser scanner, and Joint Roughness Coefficient (JRC) values were calculated from 30 sections in each sample. Although JRC values varied with the location of the section, the average JRC values from any three sections provides an adequate representation of the average JRC value for the entire surface well. Direct shear tests were performed on nine joints reproduced using molds of real joints in samples of gypsum. The peak friction angles (${\phi}_p$) showed a linear relationship with the average JRC values, yielding the following relationship: ${\phi}_p=41.037+1.046JRC$. However, the shear strengths measured by direct shear tests differed from those calculated using Barton's criterion. The relationship between calculated from direct shear tests and JRC measured from joint surfaces is defined as $JRC_R=f{\cdot}JRC$, and the correction coefficient f is was calculated as $f=3.15JRC^{-0.5}$, as calculated by regression. A modified shear-strength criterion, is proposed using the correction coefficient, ${\tau}={\sigma}_n{\cdot}tan(3.15JRC^{0.5}{\bullet}{\log}_{10}\frac{JCS}{{\sigma}_n}+{\phi}_b)$. This criterion may be effective in calculating the shear strength of moderately weathered rock joints and highly weathered rock joints with low strength and ductile behavior.

Rational Evaluation of Seismic Response Modification Factor of Steel Moment Frame Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 철골모멘트골조의 반응수정계수 산정법)

  • Lee, Cheol-Ho;Kim, Geon-Woo;Song, Jin-Gyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.11-17
    • /
    • 2007
  • In current seismic design practice, the response modification factor (R-factor) is used as a factor to reduce the elastic base shear demand to the design force level. As is well-known, the R-factor is a committee-consensus factor and, as such, highly qualitative and empirical. The relationship between the R-factor and the connection rotation capacity available in a particular structural system has remained a missing link. In this paper, a rational procedure to evaluate the R-factor is proposed. To this end, the relationship between the available connection rotation capacity and the R-factor is defined and quantified using nonlinear pushover analysis. An RRS steel frame designed according to IBC 2000 was used to illustrate and verify the proposed procedure. Nonlinear time history analysis results indicated that the R-factor definition proposed in this study is generally conservative from design perspective.

New Curved Beam Elements Including Shear Effects (전단 효과를 고려한 새로운 곡선보 요소)

  • 최종근;임장근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.751-756
    • /
    • 1991
  • 본 연구에서는 Ashwell이 제시한 변형률요소를 전단효과를 고려한 두꺼운 곡 선보 요소에 적용 하였다. 막 변형률, 곡률, 전단변형률 각각에 독립된 변형률 함수 를 가정하여 미분 방정식의 일반해를 구하면 정확한 강체변위의 표현은 물론, 강성과 잉현상을 피할 수 있고 얇은 곡선보에서 두꺼운 곡선보에 이르기까지 보의 해석에 있 어서, 2절점으로 구성되는 적은 자유도수에서 높은 정확도를 보여주는 간편하고도 효 율적인 요소를 개발하고자 하였다.

An Improved Heat Transfer Prediction Model for Turbulent Falling Liquid Films with or Without Interfacial Shear (계면 전단응력이 있을 때와 없을 때 하강하는 난류액막에 대한 개선된 열전달 예측 모델)

  • Park, Seok-Jeong;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.189-202
    • /
    • 1995
  • An improved method is presented for the prediction of heat transfer coefficients in turbulent fall-ing liquid films with or without interfacial shear for both heating or condensation. A modified Mudawwar and El-Masri's semi-empirical turbulence model, particularly to extend its use for the turbulent falling film with high interfacial shear, is used to replace the eddy viscosity model incorporated in the unified approach unposed by Yih and Liu. The liquid film thickness and asymptotic heat transfer coefficients against the film Reynolds number for wide range of interfacial shear predicted by both present and existing methods are compared with experimental data. The results show that in general, predictions of the modified model agee more closely with experimental data than that of existing models.

  • PDF

Investigation on Response Modification Factor of RC Structural Walls in Apartment Buildings (아파트 건물의 구조 벽체에 대한 반응수정계수)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.544-552
    • /
    • 2001
  • Korea is classified into low and moderate seismic zone from the view-point of seismic hazard level. Korean seismic provisions has been developed based on UBC and ATC 3-06. Thus, in calculation of design base shear according to Korean provisions response modification factor (R) is included in the formula of design base shear. The major role of this factor is to reduce the elastic design base shear whereby structures can behave in inelastic range during design level earthquake ground motions(mean return period of 475 yrs.). R factor is assigned according to material and structural systems. In this study, R factor for bearing wall system is considered. Most of the walls of apartment buildings in Korea resist gravity and seismic loads simultaneously so that this wall system can be classified into bearing wall system. Structural details of these walls are different from those used in Japan and U.S.. They are all rectangular in sectional shape rather than barbell in shape, and also have special lateral reinforcement details at the boundaries of a wall. In Korean seismic design provisions(1988), two different values(3.0 and 3.5) of R factor are assigned to the bearing wall systems according to the wall details. However, in updated seismic provisions(2000), only one value is assigned to R factor(3.0) irrespective of wall details. In this study, the design base shear values in Korean seismic design provisions(1988, 2000), ATC 3-06, UBC are compared. Also experimental study was carried out to evaluate the seismic performance of structural walls. For this purpose, five test specimens were made which have special details used in apartment bearing wall systems in Korea. Based on the results of this study, response modification factor for bearing wall system is discussed.