• Title/Summary/Keyword: 전기 에너지

Search Result 7,615, Processing Time 0.032 seconds

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

A Study on Selection of an Overhead Electrical Transmission Line Corridor with Social Conflict (사회적 갈등을 갖는 송전선로 경과지 선정에 관한 연구)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Hak-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.577-584
    • /
    • 2021
  • Electrical energy is an essential component in present societies, which is an important basis for our technological society. In the design of new power infrastructure, it is important to consider the psychological aspects of how our culture considers and aspects its development as an integral component of the community environment. The construction of new high voltage overhead transmission lines has become a controversial issue for public policy of government due to social opposition. The members of community are concerned about how these power lines may have an impact on their lives, basically caused by their effects on health and safety. The landscape and visual impact is one of the most impact that can be easily perceived for local community. The computer 3D simulation of new landscape is illustrated by a real life use corresponding to the selection of the power line route with least observability for local community. This paper used ArcGIS(geographic information system tool) for planning, survey, basic route and detailed route, route for implementation of transmission line corridor. Also, the paper showed the map of natural environment, living environment, safety and altitude using database of power line corridor, and transmission siting model was developed by this study. The suggested landscape of computer simulation with lowest visibility on a power line zone can contribute to reducing oppositions of local community and accelerating the construction of new power lines.

Phase stability of TiO2 synthesized by Sol-gel Method at various pH and calcination temperatures (졸-겔 방법으로 합성된 TiO2 상안정성에 대한 pH 및 열처리 온도의 영향)

  • Lee, Jae-Yeon;Kim, Yong-Jin;Kim, Dae-Sung;Shin, Hyo-Soon;Nahm, Sahn;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.166-173
    • /
    • 2021
  • The rutile phase of TiO2 forms a stable phase at high temperatures compared to anatase phase, but the stable temperature range of anatase changes depending on the synthesis conditions. In this study, nano-sized TiO2 was synthesized by the Sol-gel method using TiOSO4 and a mixed solvent of ethanol and distilled water, and the phase change of anatase and rutile according to pH and heat treatment temperature was investigated. Changes in the ratio of anatase and rutile were observed by changing the pH (3, 5, 7, 9) and heat treatment temperature (500, 600, 700, 800, 900℃) conditions of the prepared TiO2. As a result of observing these changes through XRD and FE-SEM analysis, anatase TiO2 at 500℃ and rutile TiO2 at 900℃ were observed. According to the pH, at these intermediate temperatures of 600, 700 and 800℃, the ratio of anatase and rutile changes. At 700℃, it was concluded that pH = 3~5 had a larger ratio of anatase TiO2, and pH = 7~9 had a larger ratio of rutile TiO2.

Effect of Dietary Supplementation of Enzyme and Microorganism on Growth Performance, Carcass Quality, Intestinal Microflora and Feces Odor in Broiler Chickens (효소제와 미생물제제의 첨가 급여가 육계의 생산성, 도체성적, 장내 미생물 및 계분 악취에 미치는 영향)

  • Park, Cheol Ju;Sun, Sang Soo
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.275-283
    • /
    • 2020
  • This experiment was conducted to investigate the effect of the addition of enzymes and microorganisms to broiler feed on productivity, carcass characteristics, intestinal microflora, and feces odor. A total of one-hundred eighty 180 chicks (Ross 308) were randomly assigned to 5 treatments with 3 replications each having 12 birds per pen. The experimental group was divided into 0.1% EZ group (0.1% metallo-protease added to the feed), 0.2% EZ group (0.2% metallo-protease added to the feed), M group (2.0% Bacillus veleznesis CE 100 added to the feed), and MW group (2.0% Bacillus veleznesis CE 100 added to the feed and drinking water). In the results, final body weight, body weight gain, the feed conversion ratio, protein efficiency, and energy efficiency were not significantly different among all treatments in across all periods. Carcass weight, proventriculus, gizzard, heart, small intestine, cecum, and rectum weight were not significantly different among all of the treatments. However the liver weight was significantly higher in the 0.1% EZ group than in the control, M and MW groups (P< 0.05). E. coli was significantly lower in MW than in the control and M (P<0.05), and it was significantly higher in the M than 0.2% EZ and MW (P<0.05). H2S emissions in feces was not significantly different among all treatments, but NH3 emissions was were significantly higher in 0.1% EZ than in MW (P<0.05). In conclusion, the addition of 0.1% of metallo-protease was effective in the development of the liver of broilers.

Development of Synthetic Signal Generator and Simulator for Performance Evaluation in Multiple Sonobuoy System (다중 소노부이 체계의 신호합성기 및 성능검증용 시뮬레이터 개발)

  • Lee, Su Hyoung;Park, Sang Bae;Han, Sang-Gyu;Kown, Bum Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.11-22
    • /
    • 2021
  • Sonobuoy is widely used as a very important sensor in combat management system using P-3 patrol aircraft due to its advantages of rapid searching into wide exploration range. It is necessary to verify the performance of developed sonobuoy system using various maritime test data in order to be successfully applied in combat management system. But it is difficult to acquire various real maritime data because it needs much time and effort. Therefore we have developed in this paper a synthetic signal generator and a simulator that they can verify the performance of sonobuoy system and evaluate its operational effectiveness without conducting maritime test. We have synthesized target signals based on the characteristics of underwater sound sources, and then developed the synthesized signal generator which consider to sound propagation etc. like as underwater environment. And in the simulator development we use a HMI technique to enhance the convenience of operator, and design to verify the performance of sonobuoy system. The developed signal generator and simulator can be used as useful tools to evaluate the operational effectiveness such as optimal deployment of sonobuoy in combat management system using P-3 patrol aircraft.

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process (전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Park, Jun-beom;Jeong, Tak;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

Groundwater Quality Characteristics of Pollution Concerned Area in Gyeongnam Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 활용한 경남 오염우려지역의 지하수 수질 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.174-181
    • /
    • 2021
  • This study analyzed the groundwater quality characteristics according to the main source of pollution and quarter (season) by using data from the pollution exclusive monitoring network in the Gyeongsangnam-do area for five years (2013-2017). The main source of pollution was the industrial complex areas, waste mines, and sewage treatment facilities. The analysis items were field measurement items (water temperature, pH, electrical conductivity, dissolved oxygen, oxide reduction potential), positive ions, and negative ions. Water temperature and pH did not vary significantly according to the main source of pollution. In industrial complex areas, the value of electrical conductivity was the highest, and dissolved oxygen value was the lowest. The mean concentration of positive and negative ions was the largest in industrial complex areas, followed by sewage treatment facilities and waste mines. It was shown that the concentration of sodium ion was the highest in industrial complex areas and calcium ion in waste mines and sewage treatment facilities. The concentration of bicarbonate ion was the highest in all main sources of pollution. Water temperature, pH, and concentrations of cations and anions did not vary significantly from quarter to quarter. Of the water quality types, the Na-HCO3 type accounted for the highest proportion, but the Na-Cl type, which has a high possibility of external contamination, accounted for about 20% of the total data in the pollution exclusive monitoring network.

A Study on the Preparation and Purification Characteristics of Graphene Oxide by Graphite Type (흑연 종류에 따른 산화 그래핀의 제조 및 정제를 통한 특성연구)

  • Jeong, Kyeom;Kim, Young-Ho
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-138
    • /
    • 2021
  • Research is being conducted on graphene to provide graphene having both excellent physical as well as electrical properties in addition to unique physical properties. In this study, Hummer's method, which is a representative method for chemical exfoliation, was applied in order to investigate the possibility of the mass production of high-quality graphene oxide. Three types of graphite (graphite, crystalline graphite, and expanded graphite) were used in the preparation of graphene oxide with variations in the amount of potassium permanganate added, reaction temperature, and reaction time. Then a Fourier transform infrared spectroscopy (FT-IR), a Raman spectrometer, and a transmission electron microscope (TEM) were used to measure the quality of the prepared graphene oxide. Of the three types of graphite used in this experiment, crystalline graphite showed the highest quality. The prepared graphene oxide was then purified with an organic solvent, and an analysis conducted using energy dispersive X-ray spectroscopy (EDS). From the results of the residual values, we were able to confirm that both acid wastewater and wastewater were best purified using cyclohexane. The method for manufacturing graphene oxide as well as the method of purification using organic solvents that are presented in this study are expected to have less of an environmental impact, making them environmentally friendly. This makes them suitable for use in various industrial fields such as the film industry and for heat dissipation and as coating agents.

A Review on Development of PPO-based Anion Exchange Membranes (PPO 기반 음이온 교환막 소재 개발 동향)

  • An, Seong Jin;Kim, Ki Jung;Yu, Somi;Ryu, Gun Young;Chi, Won Seok
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.

A Review on Coal Exploration in Indonesia: The Cases of Korean Public-private Cooperation (인도네시아 석탄 탐사에 관한 고찰: 해외자원개발 조사사업 지원사례들)

  • Choi, Younggi;Kim, Byounghan;Song, Younghyun;Keum, Gyojin;Sung, Junyoung;Seo, Changwon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.149-169
    • /
    • 2022
  • Indonesia coal is widely consumed as a major energy source in Asian countries, such as China, India, and Korea. In the paper, the characteristics of the coal-bearing basin and coal deposits in Indonesia are comprehensively reviewed using the exploration data accumulated through the coal exploration projects supported by Korean government subsidy. Cenozoic coal bearing sedimentary basins in Indonesia extensively contain coal deposits and are most productive in East Asia. Properties of coal deposits are variable depending on stratigraphy, depositional histories and tectonics. Eocene coal deposits tend to have thinner coal thickness and fewer numbers of coal seams, but have been major exploration targets due to higher calorific value and good coal quality. Late Oligocene-Early Miocene coal deposits occur in small scales, but are suitable enough for small to medium-sized coal mines. Miocene-Pliocene coal deposits, which are widely distributed across East Kalimantan and Sumatra, are being actively mined by taking advantage of thick coal thickness and abundant reserves in spite of their lower calorific values. The experience of various exploration informs that we need to have an overall understanding on geological conditions for successful coal exploration. The details on coal-bearing basin and coal deposits in Indonesia provided through the paper will be useful data for up-coming exploration activities by Korean companies.