DOI QR코드

DOI QR Code

Groundwater Quality Characteristics of Pollution Concerned Area in Gyeongnam Using Groundwater Quality Monitoring Data

지하수수질측정망 자료를 활용한 경남 오염우려지역의 지하수 수질 특성

  • Cha, Suyeon (Department of Production Technology and Engineering, Graduate School of Convergence Science and Technology, Gyeongsang National University) ;
  • Seo, Yang Gon (Department of Chemical Engineering/RIGET, Gyeongsang National University)
  • 차수연 (경상대학교 융합과학기술대학원 생산기술공학과) ;
  • 서양곤 (경상대학교 화학공학과/그린에너지융합연구소)
  • Received : 2021.05.21
  • Accepted : 2021.06.05
  • Published : 2021.06.30

Abstract

This study analyzed the groundwater quality characteristics according to the main source of pollution and quarter (season) by using data from the pollution exclusive monitoring network in the Gyeongsangnam-do area for five years (2013-2017). The main source of pollution was the industrial complex areas, waste mines, and sewage treatment facilities. The analysis items were field measurement items (water temperature, pH, electrical conductivity, dissolved oxygen, oxide reduction potential), positive ions, and negative ions. Water temperature and pH did not vary significantly according to the main source of pollution. In industrial complex areas, the value of electrical conductivity was the highest, and dissolved oxygen value was the lowest. The mean concentration of positive and negative ions was the largest in industrial complex areas, followed by sewage treatment facilities and waste mines. It was shown that the concentration of sodium ion was the highest in industrial complex areas and calcium ion in waste mines and sewage treatment facilities. The concentration of bicarbonate ion was the highest in all main sources of pollution. Water temperature, pH, and concentrations of cations and anions did not vary significantly from quarter to quarter. Of the water quality types, the Na-HCO3 type accounted for the highest proportion, but the Na-Cl type, which has a high possibility of external contamination, accounted for about 20% of the total data in the pollution exclusive monitoring network.

본 연구에서는 경상남도 지역의 오염감시전용측정망의 5년간(2013 ~ 2017) 자료를 이용하여 주오염원과 분기별 지하수 수질특성을 분석하였다. 주오염원은 산업단지지역, 광산·폐광산지역 및 하수처리시설로 구별하였다. 분석 항목은 현장측정 항목(수온, pH, 전기전도도, 용존산소, 산화물환원전위), 양이온 그리고 음이온이었다. 수온과 pH는 주오염원에 따라 크게 변하지 않았다. 양이온과 음이온의 평균농도의 합은 산업단지지역에서 가장 높았고, 하수처리시설 그리고 광산·폐광산지역 순이었다. 산업단지지역에서는 전기전도도의 값이 가장 높았고, 용존산소의 값이 가장 낮았다. 산업단지지역은 나트륨이온이 가장 높은 구성비를 보인 반면 하수처리시설과 광산·폐광산지역에서는 칼슘이온이 가장 높은 값을 나타내었다. 모든 주오염원에서 중탄산염의 농도가 가장 높게 나타났다. 수온, pH 그리고 양이온과 음이온의 농도는 분기마다 크게 다르지 않았다. 수질유형 중 Na-HCO3 유형이 가장 높은 비율을 차지하였으나, 외부 오염의 가능성이 높은 Na-Cl 유형도 오염감시전용측정망의 전체 자료 중 약 20%를 차지하였다.

Keywords

References

  1. Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Fogg, G. E., Hobbs, B. F., and Rouhani, S., "Review of Ground-water Quality Monitoring Network Design," J. Hydraulic Eng., 118(1), 11-37 (1992). https://doi.org/10.1061/(ASCE)0733-9429(1992)118:1(11)
  2. Frapporti, G., Vriend, S. P., and van Gaans, P. F. M., "Hydrogeochemistry of the Shallow Dutch Groundwater: Interpretation of the National Groundwater Quality Monitoring Network," Water Resour. Res., 29(9), 2993-3004 (1993). https://doi.org/10.1029/93WR00970
  3. Reijnders, H. F. R., van Drecht, G., Prins, H. F., and Boumans, L. J. M., "The Quality of the Groundwater in the Netherlands," J. Hydrology, 207(3-4), 179-188 (1998). https://doi.org/10.1016/S0022-1694(98)00132-2
  4. Dawoud, M., A., "Design of National Groundwater Quality Monitoring Network in Egypt," Environ. Monit. Assess., 96(1), 99-118 (2004). https://doi.org/10.1023/B:EMAS.0000031718.98107.eb
  5. Jousma, G., and Roelofsen, F. J., "World-wide Inventory on Groundwater Monitoring," International Groundwater Resources Assessment Centre Report GP 2004-1 (2004).
  6. Dauhney, C. J., Raiber, M., Moreau-Fournier, M., Morgenstern, U., and van der Raaij, R., "Use of Hierarchical Cluster Analysis to Assess the Representativeness of a Baseline Groundwater Quality Monitoring Network: Comparison of New Zealand's National and Regional Groundwater Monitoring Programs," Hydrogeol. J., 20(1), 185-200 (2012). https://doi.org/10.1007/s10040-011-0786-2
  7. Ministry of Land, Infrastructure and Transport, "Groundwater Management Basic Plan Revision (2017~2026)," (2017).
  8. Ministry of Environment, "Groundwater Quality Monitoring Network and Water Pollution Measurement Plan," (2017).
  9. Ministry of Environment, "Study on Establishment and Operation of Integrated National Groundwater Measurement (Observation) Network," (2019).
  10. Kim, N, J., Cho, M. J., and Woo N. C., "Developing a National Groundwater- Monitoring Network in Korea," Hydrogeol. J., 3(4) 89-94 (1995). https://doi.org/10.1007/s100400050075
  11. Park, J. K., Kim, R. H., Lee, J. Y., Choi, D. H., and Kim, T. D., "Evaluation of Status of Groundwater Quality Monitoring Network of Korea: Implications for Improvement," J. Soil Groundwater Environ., 12(6), 92-99 (2007).
  12. Lee, J. Y., Yi, M. J., Yoo, Y. K., Ahn, K. H., Kim, G. B., and Won J. H., "A Review of the National Groundwater Monitoring Network in Korea," Hydrol. Process., 21(7), 907-919 (2007). https://doi.org/10.1002/hyp.6282
  13. Lee, J. Y., and Kwon, K. D., "Current Status of Groundwater Monitoring Networks in Korea," Water, 8(4) 168 (2016). https://doi.org/10.3390/w8040168
  14. Choi, B. Y., Yun, S. T., Kim, K. H., Kim, J. W., Kim, H. M., Koh, Y. K., "Hydrogeochemical Interpretation of South Korean Groundwater Monitoring Data Using Self-Organizing Maps," J. Geochem. Explor., 137, 73-84 (2014). https://doi.org/10.1016/j.gexplo.2013.12.001
  15. Bang, S., Yoo, K., and Park, J., "Temporal Trend Analysis of Contamination Using Groundwater Quality Monitoring Network Data," J. Korean Soc. Water Quality, 27(1), 120-128 (2011).
  16. Cha, S., and Seo, Y. G., "Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network," Clean Technol., 26(1) 39-54 (2020).
  17. Ministry of Environment, "2020 Groundwater Annular Report," (2020).
  18. http://sgis.nier.go.kr/ (accessed Jun. 2019).
  19. Seo, Y. G., "A Study on Geochemical Characteristics and Statistical Interpretations of Groundwater using Long-Term Groundwater Monitoring Data," Ph. D. Dissertation, The University of Suwon (2015).
  20. Han, S. W., Kim, B. J., and Lee, G. J., "Study on the Quality of Ground Water in Kyungbuk Region 2: Study on the State of Ground Water by the Depth," J. Ind. Technol., 3(1), 434-437 (2000).
  21. Kim, J. K., Kwon, K. A., Byeon, J. H., Park, J. H., Park, H. G., and Lim, Y. J., "Characteristic Analysis of Water Quality from Groundwater Monitoring Network in the North Area of Gyeonggi-do," J. KIHE, 20, 207-214 (2007).
  22. Yang, K. H., "The Comparative Assessment on Characteristics of Ground Water Pollution Through the Best Selection of Background Area," MS Thesis, Inha University (2011).
  23. Han, S. W., Yang, D. S., and Kim, B. J., "A Study on the Quality of Ground Water in Kyungbuk Region 4: The Characteristics of Groundwater by Rock Types," J. Ind. Technol., 5(1), 713-718 (2002).
  24. Ministry of Environment and National Institute of Environmental Research, "Explanation of Standards of Drinking Water Quality,"(2017).
  25. Kim, G., Choi, D., Yoon, P., and Kim K., "Trends of Groundwater Quality in the Areas with a High Possibility of Pollution," J. Kor. Geo-Environ. Soc., 11(3), 5-16 (2010).
  26. Lee, E. J., Woo, N. C., Lee, B. S., and Kim, Y. B., "Variation in Nitrate Contamination of Shallow Groundwater in a Farmland in Gyeonggi-do, Korea," Econ. Environ. Geol., 41(4) 393-403 (2008).