• Title/Summary/Keyword: 전기화학적 촉매

Search Result 326, Processing Time 0.027 seconds

Graphene/Multi-Walled Carbon Nanotubes Hybrid Materials for Supercapacitors

  • Lee, Bo-Reum;Chang, Dong Wook
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2015
  • We have developed a versatile method for the preparation of chemically linked graphene/multi-walled carbon nanotubes (MWNTs) hybrid materials via simple acid-catalyzed dehydration reaction between graphene oxide (GO) and amine-functionalized MWNTs (af-MWNTs). In this condition, ketone (-C=O) groups in GO and primary amine (-NH2) moieties in af-MWNTs readily react to form imine (-C=N-) linkage. The chemical structures of graphene/MWNTs hybrid materials have been investigated using various microscopic and spectroscopic measurements. As a result of the synergetic effects of hybrid materials such as improved surface area and the superior structural restoration of graphitic networks, the hybrid materials demonstrate improved capacitance with excellent long-term stability. Furthermore, controlled experiments were conducted to optimize the weight ratio of graphene/MWNTs in hybrid materials. The highest capacitance of 132.4 F/g was obtained from the GM7.5 material, in which the weight ratio between graphene and MWNTs was adjusted to 7.5/1, in 1M KOH electrolyte at a scan rate of 100 mV/s.

Conditioning Effects on LSM-YSZ Cathodes for Thin-film SOFCs

  • Lee You-Kee;Visco Steven J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • Composite cathodes of $50/50\;vol\%$ LSM-YSZ $(La_{-x}Sr_xMnO_3-yttria\;stabilized\;zirconia)$ were deposited onto dense YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and studied by ac-impedance spectroscopy (IS). The conditioning effects on LSM-YSZ cathodes were seen and remedies for these effects were noted in order to improve the performance of a solid oxide fuel cell (SOFC). The effects of temperature on impedance, surface contamination on cathode bonding to YSZ electrolyte, changing Pt paste, aerosol spray technique applied to curved surface on microstructure and cell to cell variability were solved by testing at $900^{\circ}C$, sanding the YSZ surface, using only one batch of Pt paste, using flat YSZ plates and using consistent procedures and techniques, respectively. And then, reproducible impedance spectra were confirmed by using the improved cell and the typical spectra measured for an (air)LSM-YSZ/YSZ/LSM-YSZ(air) cell at $900^{\circ}C$ were composed of two depressed arcs. Impedance characteristics of the LSM-YSZ cathodes were also affected by experimental conditions such as catalytic interlayer, composite cathode compositions and applied current.

Recent Advance in Microbial Fuel Cell based on Composite Membranes (복합막 기반의 미생물 연료전지 연구에 대한 총설)

  • Kim, Se Min;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • Microbial fuel cell (MFC) is a bio-electrochemical device that generates electricity by utilizing bacterial catalytic activity that degrades wastewater. Proton exchange membrane (PEM) is the core component of MFC that decides its performance, and Nafion membrane is the most widely used PEM. In spite of the excellent performance of Nafion, it has drawbacks such as high cost, biofouling issue, and non-biodegradable property. Recent studies in MFC attempted to synthetize the alternative membrane for Nafion by incorporating various polymers, sulfonating, fluorinating, and doping other chemicals. This review summarizes characteristics and performances of different composite membrane based MFCs, mostly focusing on PEM.

Study of the Nonstoichiometry of Titanium Dioxide (산화티탄 (IV)의 비화학양론에 관한 연구)

  • Yo, Chul Hyun;Kim, Dai Uk;Choi, Jae Shi
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.323-332
    • /
    • 1976
  • The x or $x^0+x'$ values of the nonstoichiometric chemical formula $TiO_{2-x}$ or $Ti_{2-(x^0+x')}$ have been measured by a specially made magnetic quartz microbalance in a temperature range from 600 to $1300^{\circ}C$ under oxygen pressures of $1{\times}10^{-6} to 1 atm. The standard x or $x^0$ value of the rutile is 0.00148. The x values $under_xoxygen$ pressure of 1 atm decrease with temperatures and then the stoichiometric rutile (or x = 0) is formed at $1130^{\circ}C$. The x values varied between 0.00148 and 0.01719 at a temperature range from 600 to $1300^{\circ}C$ under $1{\times}10^{-9}{\sim}1{\times}10^{-2}$ atm oxygen pressures. The enthalpies of formation of the nonstoichiometric rutile, $H_f$, varied between 21.05 and 29.97 Kcal/mole under the above conditions. The 1/n values calculated from the plots of log X' vs. log $Po_2$ are -{\frac{1}{2}}{\sim}-{\frac{1}{4}} under low oxygen pressure range of $1{\times}10^{-6}\;to\;1{\times}10^{-4}$ atm. Many physical properties of the titanium dioxide, such as the stability of the rutile, Electrical conductivity, catalytic activity and defects, can be explained through the x values and the thermodynamic data calculated from the temperature and oxygen pressure dependences of the x' values.

  • PDF

Synthesis of carbon nanosheets using RF thermal plasma (유도 열플라즈마를 이용한 카본나노시트 합성)

  • Lee, Seung-Yong;Ko, Sang-Min;Koo, Sang-Man;Hwang, Kwang-Taek;Han, Kyu-Sung;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.207-212
    • /
    • 2014
  • An ultrathin sheet-like carbon nanostructure provides an important model of a two-dimensional graphite structure with strong anisotropy in physical properties. As an easy and cheap route for mass production, RF thermal plasma synthesis of freestanding carbon nanosheet from $CH_4$ (Methane) and $C_3H_8$ (Propane) is presented. Using vapor synthesis process with RF inductively thermal plasma, carbon nanosheets were obtained without catalysts and substrates. The synthesized carbon nanosheets were characterized using transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. The carbon nanosheets synthesized using methane and propane generally showed 5~6 and 15~16 layers with a wrinkled morphology and size of approximately 100 nm.

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

Development of GDH-glucose Sensor using Ferrate Complex (철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구)

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Samantha Saeyoung;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.

Transesterification Kinetics of Dimethyl Terephthalate with 1,4-Butanediol (디메틸테레프탈레이트와 1,4-부탄디올의 에스테르교환 반응 특성)

  • Cho, Impyo;Lee, Jinhong;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.58-67
    • /
    • 2013
  • PBT (polybutylene terephthalate) has excellent mechanical properties such as low absorption, dimensional stability, abrasion resistance. It is used in manufacturing electronic components, the automobile part and the various precise parts. Bis (hydroxybutyl) terephthalate (BHBT) which is a PBT monomer, can be produced by transesterification reaction of DMT (dimethyl terephthalate) with 1,4-butandiol (BD). The kinetics of transesterification reaction of DMT with BD using zinc acetate as a catalyst was studied in a batch reactor. Previous kinetic studies was carried out in a semibatch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous models was obtained and found to have a good agreement between model predictions and experimental data.

Using Effective Temperatures to Determine Safety Cultivation Season in Direct Seeding Rice on Dry Paddy (작물생육 유효기온 출현시기를 이용한 건답직파 벼의 지역별 안전작기 설정)

  • 최돈향;윤경민;윤성호;박무언
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.666-672
    • /
    • 1997
  • Twenty years' daily mean air temperature data was used to calculate the critical early seeding date(CESD), the optimum heading date(OHD), the critical late heading date for stable ripening(CHDR) and the critical late ripening date(CLRD) for rice seeded on dry paddy in different agroclimatic zones in Korea. The CESD was defined as the first day with mean air temperature of 13$^{\circ}C$, and the OHD as the first day of the 40 consecutive days with mean air temperature of 22$^{\circ}C$ or above after heading. The CHDR was defined as the date after which the cumulative daily mean air temperature would be at least 76$0^{\circ}C$. Lastly, the CLRD was defined as the last day when daily mean air temperature remains above 15$^{\circ}C$. This information was used for the estimation of periods from the earliest date of seeding to optimum heading date, the latest possible date of heading and the latest possible date of ripening in respective regions. For instance, in Suwon, those respective periods mentioned were found to be 104days, 124days, and 165days.

  • PDF

Analysis of Experiments for the Rules of Material Change Unit in 9th Grade Science Textbooks and the Development of Experiments Applying Small-Scale Chemistry (9학년 과학교과서 물질변화에서의 규칙성 단원 실험 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Ryu, Ran-Yeong;Kim, Dong-Jin;Hwang, Hyun-Sook;Park, Se-Yeol;Lee, Sang-Kwon;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.529-540
    • /
    • 2011
  • The purpose of this study was to analyze experiments for the rules of material change unit in 9th grade science textbooks and develop experiments applying small-scale chemistry (SSC). For this study, experimental methods for the precipitation experiment, water electrolysis experiment, decomposition of hydrogen peroxide experiment presented in the 9 science textbooks were analyzed. Problems and improvements that were needed were extracted by 13 science teachers performing the experiments. Experiments applying SSC were developed based on the improvements needed. Afterwards, 19 pre-service science teachers performed both the developed SSC experiments and the science textbooks' experiments. A questionnaire about merits and demerits of the experiments applying SSC was performed. According to the results of this study, most of the 9th grade science textbooks included the lead iodide precipitation experiment, water electrolysis experiment by Hoffman voltameter, and decomposition of hydrogen peroxide experiment using catalytic manganese dioxide. Improvements were needed on the quantity of reagents, time for performing experiments, and scale of experimental apparatus. Merits of the developed experiments applying SSC which used small amount of reagents were safety, easy waste material disposal, short reaction time, and reproducible experimental results. Demerits of the experiments applying SSC were difficulty in observing, decreased achievement, and lack of skill in handling small-scale apparatus. Therefore, if the experiments developed applying SSC were to be utilized in 9th grade science experiments, it will be possible to use less reagent and be able to teach and carry out reproducible experiments at the same time. Also, the reproducible experiments based on SSC will help students under stand the scientific concepts for the rules of material change unit.