• Title/Summary/Keyword: 전기전도성

Search Result 1,516, Processing Time 0.028 seconds

Chemical Analysis and Thermoelectric Properties of the PbSnTe Semiconductors (화학조성에 따른 PbSnTe계 반도체의 열전특성조사)

  • Oh, Kyu-Whan;Oh, Seung-Mo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 1990
  • The semiconducting $(Pb_1\;_xSn_x)_1$ $_yTe_y$, one of the low - temperature thermoelectric materials, has been prepared and its chemical composition and nonstoichiometry has been analyzed. The content of Pb in the specimens was determined by the complexometric back - titration method with EDTA and Pb(II) standard solutions. Te - content was analyzed with the redox titration method. The electrical conductivity and the thermoelectric power have also been measured by the DC 4 - probe and the heat-pulse technique, respectively. All of the specimens showed a nonstoichiometric behavior in their chemical compositions (Te excess), thus gave rise to a p - type semiconducting property, and the nonstoichoimetry became bigger as the Sn - content increased. The thermoelectric power vs. temperature results have been analyzed upon the basis of the Fermi level vs. temperature profiles in the saturation regime. The specimen of x=0.1 evolved a transition from p - to n - type property at about 670K, which has been explained by the fact that the mobility of electrons is bigger than that of holes in the temperature range of the intrinsic regime.

  • PDF

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

Recent Advances in Eco-friendly Nano-ink Technology for Display and Semiconductor Application (디스플레이 반도체 기술 적용을 위한 청정 나노잉크 제조 기술)

  • Kim, Jong-Woong;Hong, Sung-Jei;Kim, Young-Seok;Kim, Young-Sung;Lee, Jeong-No;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • Printing technologies have been indicated as alternative methods for patterning conductive, semi-conductive or insulative materials on account of their low-cost, large-area patternability and pattern flexibility. For application of the printing technologies in manufacture of semiconductor or display modules, ink or paste composed of nanoparticles, solvent and additives are basically needed. Here, we report recent advances in eco-friendly nano-ink technology for semiconductor and display technology. Then, we will introduce an eco-friendly ink formation technology developed in our group with an example of manufacturing $SiO_2$ nanopowders and inks. We tried to manufacture ultrafine $SiO_2$ nanoparticles by applying a low-temperature synthetic method, and then attempted to fabricate the printed $SiO_2$ film onto the glass substrate to see whether the $SiO_2$ nanoparticles are feasible for the printing or not. Finally, the electrical characteristics of the films were measured to investigate the effect of the manufacturing parameters.

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

Comparision of Combined Stress Tests for Predicting Field Emergence of Lotus corniculatus and Trifolium pratense (Birdsfoot Trefoil과 Red Clover의 포장출현율 예측을 위한 몇가지 Stress 검정법 비교)

  • Kim, Seok-Hyeon;Choe, Zhin-Ryong;Chung, Min-Hong;Han, Kyeong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.171-177
    • /
    • 1992
  • The purpose of this study was to compare the test methods for predicting field emergence of Lotus corniculatus and Trifolium pratense. Four seed lots of two herbage legumes were controlled deteriorated, accelerated aged before germination test and conductivity of each seed lot was determined. Those germination percent and conductivity of seed lots were compared with actual field emergence rate. Field emergence rate could be estimated by the controlled deterioration test ($R^2$=0.687), by the accelerated aging test ($R^2$=0.260), and by the conductivity test ($R^2$=0.238). A multiple regression equation for predicting field emergence rate(equation omitted) was estimated as (equation omitted)=-198.16 + 2.3493X$_1$-1.5564X$_2$ + 1.9812X$_3$where X$_1$, percent germination of controlled deterioration test ; X$_2$, percent germination of accelerated aging test; and X$_3$, conductivity of solute leakage in the conductivity test. Conclusively, unless multiple tests are not available, the controlled deterioration test was comparatively high efficient for predicting field emergence rate, however, the combined measurements of those three tests can enhance the efficiency.

  • PDF

Low Cost and High Sensitivity Flexible Pressure Sensor Based on Graphite Paste through Lamination after O2 Plasma Surface Treatment Process (O2 플라즈마 표면 처리 공정 후 라미네이션 공정으로 제작된 흑연 페이스트 기반의 저비용 및 고감도 유연 압력 센서)

  • Nam, Hyun Jin;Kang, Cheol;Lee, Seung-Woo;Kim, Sun Woo;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Flexible pressure sensor was developed using low-cost conductive graphite as printed electronics. Flexible pressure sensors are attracting attention as materials to be used in future industries such as medical, games, and AI. As a result of evaluating various electromechanical properties of the printed electrode for flexible pressure sensors, it showed a constant resistance change rate in a maximum tensile rate of 20%, 30° tension/bending, and a simple pulse test. A more appropriate matrix pattern was designed by simulating the electrodes for which this verification was completed. Utilizing the Serpentine pattern, we utilized a process that allows simultaneous fabrication and encapsulation of the matrix pattern. One side of the printed graphite electrode was O2 plasma surface treated to increase adhesive strength, rotated 90 times, and two electrodes were made into one through a lamination process. As a result of pasting the matrix pattern prepared in this way to the wrist pulse position of the human body and proceeding with the actual measurement, a constant rate of resistance change was shown regardless of gender.

THE EFFECT OF C-FACTOR AND VOLUME ON MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS WITH ENAMEL MARGINS (법랑질 변연으로 이루어진 복합레진 수복물의 체적과 C-factor가 미세누출에 미치는 영향)

  • Koo, Bong-Joo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.452-459
    • /
    • 2006
  • Competition will usually develop between the opposing walls as the restorative resin shrinks during polymerization. Magnitude of this phenomenon may be depended upon cavity configuration and volume. The purpose of this sturdy was to evaluate the effect of cavity configuration and volume on microleakage of composite resin restoration that has margins on the enamel site only. The labial enamel of forty bovine teeth was ground using a model trimmer to expose a flat enamel surface. Four groups with cylindrical cavities were defined, according to volume and configuration factor(Depth x Diameter / C-factor) - Group I : 1.5 mm ${\times}$ 2.0 mm / 4.0, Group II : 1.5 mm ${\times}$ 6.0 mm / 2.0, Group III : 2.Omm ${\times}$ 1.72 mm / 5.62, Group IV : 2.0 mm ${\times}$ 5.23 mm / 2.54. After treating with fifth-generation one-bottle adhesive - BC Plus$^{TM}$ (Vericom, AnYang, Korea), cavities were bulk flted with microhybrid composite resin - Denfill$^{TM}$ (Vericom). Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Specimens were thermocycled 500 times between 5$^{\circ}$C and 55$^{\circ}$C for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}$A) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. The results were as follows: 1. Small cavity volume showed lower microleakage score than large one, however, there was no statistically significant difference. 2. There was no relationship between cavity configuration and microleakage. Factors of cavity configuration and volume did not affect on microleakage of resin restorations with enamel margins only.

Theoretical Research for Unmanned Aircraft Electromagnetic Survey: Electromagnetic Field Calculation and Analysis by Arbitrary Shaped Transmitter-Loop (무인 항공 전자탐사 이론 연구: 임의 모양의 송신루프에 의한 전자기장 반응 계산 및 분석)

  • Bang, Minkyu;Oh, Seokmin;Seol, Soon Jee;Lee, Ki Ha;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.150-161
    • /
    • 2018
  • Recently, unmanned aircraft EM (electromagnetic) survey based on ICT (Information and Communication Technology) has been widely utilized because of the efficiency in regional survey. We performed the theoretical study on the unmanned airship EM system developed by KIGAM (Korea Institute of Geoscience and Mineral resources) as part of the practical application of unmanned aircraft EM survey. Since this system has different configurations of transmitting and receiving loops compared to the conventional aircraft EM systems, a new technique is required for the appropriate interpretation of measured responses. Therefore, we proposed a method to calculate the EM field for the arbitrary shaped transmitter and verified its validity through the comparison with analytic solution for circular loop. In addition, to simulate the magnetic responses by three-dimensionally (3D) distributed anomalies, we have adapted our algorithm to 3D frequency-domain EM modeling algorithm based on the edge-FEM (finite element method). Though the analysis on magnetic field responses from a subsurface anomaly, it was found that the response decreases as the depth of the anomaly increases or the flight altitude increases. Also, it was confirmed that the response became smaller as the resistivity of the anomaly increases. However, a nonlinear trend of the out-of-phase component is shown depending on the depth of the anomaly and the used frequency, that makes it difficult to apply simple analysis based on the mapping of the magnitude of the responses and can cause the non-uniqueness problem in calculating the apparent resistivity. Thus, it is a prerequisite to analyze the appropriate frequency band and flight altitude considering the purpose of the survey and the site conditions when conducting a survey using the unmanned aircraft EM system.

Available Phosphours Phosphorus and Electrical Conductivity of the Saturated Extracts of Soils from the Plastic Film Houses (포화침출액법에 의한 시설하우스 토양의 유효인산과 전기전도도)

  • Jung, Yeong-Sang;Cho, Su-Hyun;Yang, Jae E.;Kim, Jeong-Je;Um, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Management of phosphorus availability in the plastic film house soils in Korea merits attention because salts have been accumulated for last decades due to the heavy application of fertilizers and intensive cropping practices. In an attempt to characterize the P availability, available phosphorus contents and electrical conductivity of the saturated extracts ($EC_e$) were measured for soils collected from the 169 plastic film houses in Kangwon-do. Soil phosphorus contents were analyzed by methods of Lancaster, Bray No. 1, Olsen, Truog, water extractable and saturation extracts. Phosphorus concentrations in the saturated extracts of the plastic film house soils ranged from 0.02 to $34mg\;L^{-1}$, with the average of $8mg\;L^{-1}$. The available $P_2O_5$ of the soils ranged from 136 to $3,689mg\;Kg^{-1}$, with the average of $1,261mg\;Kg^{-1}$. The water soluble $P_2O_5$ ranged from 2 to $118mg\;L^{-1}$, with the average of $39mg\;L^{-1}$. A significant correlation existed between saturation extract P (Y) and available $P_2O_5$ (X) [Y = -5.075 + 0.018X, $r=0.662^{***}$] indicating $1.0mg\;P\;L^{-1}$ of in the saturated extract was equivalent to $337mg\;Kg^{-1}$ of the available $P_2O_5$ by Lancaster method. Electrical conductivity of the saturated pastes ($EC_e$) was highly significantly correlated with EC (1:5), yielding the slope of 12.2 for the coarse textured plastic film house soils. Results of higher concentrations of available P in soil solution and dilution factor of 12.2 for $EC_e$ demonstrate that a special care must be taken in terms of fertilizer management and data interpretation for soils under this specific condition.

  • PDF

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.