• Title/Summary/Keyword: 적합 직교 분해

Search Result 47, Processing Time 0.023 seconds

Sign Reversal Channel Switching Method for Space-Frequency Block Code in Orthogonal Frequency Division Multiplexing System (직교 주파수 분할 다중화 시스템의 공간 주파수 블록 코딩에서의 부호 반전 채널 스위칭 기법)

  • Jung, Hyeok-Koo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.13-21
    • /
    • 2020
  • This paper proposes a sign reversal channel switching method in space-frequency block code for orthogonal frequency division multiplexing system. In case of sending source data on other antenna, it is necessary for the receiver to change combining method according to the channel variation. If one does not know the predefined channel switching sequence, it is not possible to decode the received data precisely. In transmit data symbols' exchanges for a channel switching, data symbols are exchanged according to a format of space-frequency block code. In this paper, we proposes a simple sign reversal method except exchanging data symbols between transmit antennas. It is shown that this method occurs another combining method for a simple encryption in the receiver.

An Efficient Channel Estimator for OFDM-CDMA Systems in Fading Channels (감쇄채널 환경에서 직교 주파수 분할 다중화-부호분할 다중접속 시스템을 위한 효율적 채널 추정기)

  • 정혜정;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8A
    • /
    • pp.1298-1310
    • /
    • 2001
  • 이 논문에서는 채널 상태가 천천히 변할 때, 직교 주파수 분할 다중화-부호분할 다중접속 시스템에 적합한 채널 추정 방법을 제안하고 성능을 분석한다. 제안한 채널 추정 방법은 시간과 주파수 영역 모두에 파일럿 심볼을 삽입하고, 이산 퓨리에 변환 후 영을 채워 넣는 방법을 이용한 내삽법으로 모든 부채널의 전달 함수를 얻는다. 또한 변환 영역에서 저대역 여파를 통해 받은 파일럿 신호에 존재하는 가산성 백색 정규 잡음의 영향을 상당히 줄일 수 있다. 이 때 저대역 여파기의 차단 주파수는 채널의 다중경로 수에 따라 정해진다. 같은 방법을 이용한 내삽법을 시간축으로 적용하여 시간에 따라 변하는 부채널의 채널 응답을 얻을 수 있다. 이 논문에서는 여러 가지 내삽법에 대한 평균 제곱 오차 성능을 수식적으로 제시한다. 제안한 저대역 여파를 결합한 내삽법을 쓰면 채널의 통계적 특성에 관한 정보 없이, 그리고 훨씬 적은 계산량으로 선형 최소 평균 제곱 오차 추정기와 비슷한 성능을 얻는다. 레일리 감쇄 채널에 대한 모의 실험을 통해 같은 비트 오류율에 대한 신호 대 잡음 비의 이득이 있음을 보인다.

  • PDF

Network Adjustment by Orthogonal Decomposition (직교분해법에 의한 측지망의 조정)

  • Lee, Young Jin;Lee, Suck Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.95-101
    • /
    • 1990
  • Orthogonal decomposition technique, not using normal equation, but using observation equation directly, is accepted for adjusting the geodetic network in this paper. The results of study show that the technique is the numerically stable and powerful method in network adjustment by inner constraints or weighted position parameters. Also, it is suitable to middle sized-network and is applicable to Cholesky Factor in the normal equation system.

  • PDF

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition (적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화)

  • Park, Chanwoo;Kim, Young Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.535-540
    • /
    • 2019
  • The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance (에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구)

  • Cheon, Seongwoo;Jeong, Hojin;Park, Mingyu;Jeong, Inho;Cho, Haeseong;Ki, Youngjung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.17-27
    • /
    • 2022
  • In this study, a deep learning-based network that can predict the aerodynamic characteristics of airfoils was designed, and the feasibility of the proposed network was confirmed by applying aerodynamic data generated by Xfoil. The prediction of aerodynamic characteristics according to the variation of airfoil thickness was performed. Considering the angle of attack, the coordinate data of an airfoil is converted into image data using signed distance function. Additionally, the distribution of the pressure coefficient on airfoil is expressed as reduced data via proper orthogonal decomposition, and it was used as the output of the proposed network. The test data were constructed to evaluate the interpolation and extrapolation performance of the proposed network. As a result, the coefficients of determination of the lift coefficient and moment coefficient were confirmed, and it was found that the proposed network shows benign performance for the interpolation test data, when compared to that of the extrapolation test data.

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods (외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구)

  • Young Kwang Hwang;Myungil Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.

EXAMPLES OF REDUCED ORDER MODELLING FOR A 3D BACKWARD FACING STEP FLOW USING POD TECHNIQUE (POD를 사용한 3차원 후향계단 유동장 분석 예제)

  • Lee, K.S.;Lee, E.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.40-42
    • /
    • 2010
  • Unsteady CFD results of the backward facing step (BFS) flow field is reconstructed by the low-dimenstional modes using the POD (Proper Orthogonal Decomposition) technique. Flow responses to the blowing or suction with various frequencies and amplitudes applied at the edge of the BFS can also be analysed using the same technique. The present technique can be effectively applied to the feedback flow control device.

  • PDF

Investigation on the Unsteadiness of a Low Reynolds Number Confined Impinging Jet using POD Analysis (POD 기법을 이용한 저 레이놀즈 수 충돌 제트의 비정상 거동 연구)

  • An, Nam-Hyun;Lee, In-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • The flow characteristics in a confined slot jet impinging on a flat plate were investigated in low Reynolds number regime (Re$\leq$1,000) by using time-resolved particle image velocimetry technique. The jet Reynolds number was varied from 404 to 1026, where it is presumed that the transient regime exists. It is found that the vortical structures in the shear layer are developed with increasing Reynolds number and that the jet remains steady at the Reynolds number of 404. Vortical structures and their temporal evolution are verified and the results were compared with previous numerical studies.