• Title/Summary/Keyword: 적응PD제어

Search Result 34, Processing Time 0.036 seconds

A study on decentralized adaptive control of robot manipulator (로보트 매니퓰레이터의 비집중 적응제어에 관한 연구)

  • 이상철;박성기;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.183-187
    • /
    • 1989
  • This paper presents on approach to the position control of a robot manipulator by using a decentralized adaptive control scheme. The large scale system is regarded as the system which consists of many subsystems having interconnection. In each subsystem, a local control system is composed by feedforward and feedback component, one computes the nominal torque from the Newton-Euler equation, the other computes the perturbation equation which reduce the position error of the manipulator along the nominal trajectory. A computer simulation studies was conducted to evaluate and compare the performances of the proposed manipulator control scheme with those of the PD control and centralized control schemes.

  • PDF

Trajectory Tracking Control of a Pnuematic Cylinder with an Adaptive Controller (적응제어기에 의한 공기압 실린더의 궤적추적 제어)

  • Lee, Su-Han;Jo, Ho-Seong;Jang, Chang-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.110-118
    • /
    • 2000
  • An adaptive controller for trajectory tracking control of a pneumatic cylinder is proposed. The controller is directly derived by using Lyapunov function, and very simple and computationally efficient since it does not require the mathematical model or the parameter values of a pneumatic system. It is also shown that the system is bounded stable with the controller, and the size of tracking errors can be made arbitrarily small. The stability and the performance of the controller is also verified experimentally. The results of the experiments demonstrate that the proposed controller achieves more accurate trajectory tracking performance than a PD controller.

  • PDF

Direct Adaptive Control for Trajectory Tracking Control of a Pneumatic Cylinder (공기압 실린더의 궤적 추적 제어를 위한 직접 적응제어)

  • Lee, Su-Han;Jang, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2926-2934
    • /
    • 2000
  • This study presents a direct adaptive controller which is derived by using Lyapunovs direct methods for trajectory tracking control of a pneumatic cylinder. The structure of the controller is very simple and computationally efficient because it does not use either the dynamic model or the parameter values of the pneumatic system. The bounded stability of the system is shown in the presence of the bounded unmodeled dynamics. The bounded size of tracking errors can be made arbitrarily small without giving andy influences on either input or output variables. The trajectory tracking performance and the stability of the control system is verified experimentally. The results of the experiments show that the proposed controller tracks the given trajectories, sine function and cycloidal function trajectories, more accurately than PD controller does, and it stabilizes the system and adaptive variables.

Simple Adaptive Position Control of a Hydraulic Cylinder-load System Driven by a Proportional Directional Control Valve (비례 방향제어 밸브에 의하여 구동되는 유압실린더-부하계의 단순 적응 위치제어)

  • Cho, Seung-Ho;Lee, Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.936-941
    • /
    • 2011
  • This paper deals with the issue of motion control of a single rod cylinder-load system using simple adaptive control (SAC) method. Prior to controller design, the experiment of open-loop response has been performed. Based on it, design parameters of transfer function are obtained and used for controller design. The effect of parallel feedforward compensator has been investigated by computer simulation, suppressing the oscillatory motion. Through experiments it is conformed that the SAC method gives good tracking performance compared to the PD control method.

A Study on Nonlinear System Control Using Adaptive PID Control (적응형 PID 제어기를 이용한 비선형 시스템 제어에 관한 연구)

  • Cho, Hyun-C.;Kim, Seong-H.;Lee, Young-J.;Lee, Kwon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.702-704
    • /
    • 1997
  • In this paper, we applied self-tuning controller with I-PD type to process with time delay's. Process parameters are estimated by the recursive least squares algorithm, and optimal gains are obtained. This paper shows self-tuning controller with I-PD type performs better than that of general PID type for the nonlinear system with sudden change of set-points.

  • PDF

Modeling and Controller Design for Attitude Control of a Moving Satellite (이동하는 위성의 자세제어를 위한 모델링 및 제어기 설계)

  • Lee, Woo-Seung;Park, Chong-Kug
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • Because the previous simulation tool for attitude control of satellite was designed for the modeling of rigid body and PD controller, the attitude error can be made more than the limitation value for keeping for communication link, and then the communication link can be lost at moving of satellite. So, for rapid attitude restoration and design of stable and modernized controller, the modelling of rigid body and flexible body structure for moving GEO and LEO satellites were performed. Also the minimum time controller is designed for the rapid restoration of attitude error at communication broken and to minimize the disconnection period from ground communication system during the satellite stationkeeping. The linear regulator is designed using the space state vector that is better than accuracy and stability of PD controller. Firstly the simulation was performed for comparison of the rigid and stability of PD controller. Firstly the simulation was performed for comparison of the rigid and flexible models using PD controller and the case of the pitch angle changing by ground command, and the case of the periodic north-south stationkeeping are performed for the analysis of response characteristics of each controller when the attitude is changed. As a result, the flexible body model represents more sililar results of real situation than the rigid body model. The minimum time controller can restore 7 times rapidly than PD controller for its lost attitude. The linear regulator has several merits for capability of adaptation against the external disturbance, stability and response time. In future, we can check the estimated results using this satellite model and controller for real operation. Futhermore the development of new controller and training can be supported.

  • PDF

A Study on the Adaptive PD Controller for robot manipulator with Elastic Joints (유연성 관절 로보트 매니퓰레이터에 대한 적응 PD 제어기에 관한 연구)

  • Kang, Ji-Won;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.394-396
    • /
    • 1992
  • This note is concerned with the point to point control of manipulators having elastic joints. We present a PD control algorithm which is adaptive with respect to the gravity and elastic parameters of robot manipulators. While the conventional control law is used, a new adaptive law is used to improve the performance. The proposed controller is shown to be stable. It is Shown that steady-state position error converges to zero through some simulations concerning the manipulator with three revolute elastic joints.

  • PDF

Design of Fuzzy-PD controller for Inverted Pendulum Using Adaptive Evolutionary Computation (도립진자의 각도 및 위치제어를 위한 적응진화연산을 이용한 퍼지-PD제어기 설계)

  • Son, W.K.;Kim, Hyung-Su;Mun, Kyeong-Jun;Hwang, Gi-Hyun;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.490-492
    • /
    • 1998
  • In this paper, fuzzy-PD control system is designed to control angle and position of the inverted pendulum. To optimize parameters of fuzzy-PD controller, we used adaptive evolutionary computation(AEC). AEC uses a Genetic A1gorithm(GA) and an Evolution Strategy(ES) in an adaptive manner in order to take merits of two different evolutionary computations.

  • PDF

Neuro-controller for a XY positioning table (XY 테이블의 신경망제어)

  • Jang, Jun Oh
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.375-382
    • /
    • 2004
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neuro-controller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

Control of Nonlinear Crane Systems with Perturbation using Model Matching Approach (모델매칭 기법을 이용한 시스템 섭동을 갖는 비선형 크레인시스템 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.523-530
    • /
    • 2007
  • Crane systems are very important in industrial fields to carry heavy objects such that many investigations about control of the systems are actively conducted for enhancing its control performance. This paper presents an adaptive control approach using the model matching for a complex 3-DOF nonlinear crane system. First, the system model is linearized through feedback linearization method and then PD control is applied in the approximated model. This linear model is considered as nominal to derive corrective control law for a perturbed crane model using Lyapunov theory. This corrective control is primitively aimed to compensate real-time control deviation due to partially known perturbation. We additionally study stability analysis of the crane control system using Lyapunov perturbation theory. Evaluation of our control approach is numerically carried out through computer simulation and its superiority is demonstrated comparing with the classical control.