• Title/Summary/Keyword: 적외선 스텔스

Search Result 18, Processing Time 0.023 seconds

A Study on The Change of NIR(Near-Infrared Reflectance) value of The Natural Sample by Landform Division (주변 자연 지형에 따른 자연시료의 NIR 반사율값 비교)

  • Lee, Hae-Jung;Kim, Mi-Ri;Ko, Jae-Hoon;Park, Yoon-Cheol
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.90-90
    • /
    • 2011
  • 스텔스 기능성 섬유의 위장은 주간의 경우, 육안 및 망원경 관측에 의해 결정되며 주변자연환경 color matching과 패턴이 핵심 스텔스 요인으로 구성되고, 가시광선 영역 스텔스로 표현할 수 있으며, 군 위장 체계에 있어 기본이 되는 기술 분야로 모든 군 위장제품에 활용되는 필수적인 기술 분야이다. 따라서 가시영역의 위장은 다양한 색상의 위장포와 포의 펀칭 등에 의한 파형특성을 부여하고 주위환경과 특성 조화를 이룸으로써 대상을 위장한다. 주요인자는 색상별 색도, 색차이다. 야간 위장은 근적외선 관측 장비의 탐지에 의해 결정되며 주변자연환경 NIR 반사율과 위장제품의 NIR 반사율 저하/제어기술이 핵심 스텔스 요인으로 구성되고, 근적외선(NIR) 영역 스텔스로 표시할 수 있으며, NIR 스텔스는 대개의 경우 기본적으로 섬유제품이 NIR 영역에서 높은 반사율을 나타내므로 NIR 반사율 저하/제어기술이 핵심이라 할 수 있다. 따라서 근적외선 영역(600~1250nm)의 적외선 반사특성을 산림지역의 반사특성과 조화시켜 위장효과를 부여한다. 위장포에서는 적외선 흡수 색소를 사용하여 적절한 반사특성을 나타나게 해야 한다. 위장용섬유가 detector의 탐지에서 벗어나려면 현재 700~1250nm의 근적외선파장영역에서 주변환경과 유사한 반사율을 지녀야한다. 이에 본 연구에서는 "숲 연구소" 및 서울대학교 "지반공학연구실"의 자문을 받아서 우리나라에서 가장 많이 존재하는 자연환경시료를 선정하여, 선정된 시료의 근적외선영역에서의 반사율을 분석하였다. 자연시료는 산간, 해안, 평야지형으로 각각 구분하여 주변 자연지형에 따른 자연시료의 근적외선영역의 반사율값을 비교하였다. 북한산에서 산간지형의 시료를 채취하였고, 해안지형의 시료는 강화도 동막해수욕장 부근, 평야지형의 시료는 인천 강화도 평야지역에서 채취하여 분석하였다. 비교분석한 지형별 자연시료의 근적외선 반사율값의 데이터베이스구축을 통하여 기존의 위장복과의 비교 적용 및 차후 개선사항 등을 검토하고자 한다.

  • PDF

Infrared Signal Characteristics of Small Turbojet Engine Plume by Observation Angle (소형 터보젯 엔진 후류의 측정 각도 별 적외선 신호 특성)

  • Choi, Jae Won;Jang, Hyeonsik;Kim, Hye Min;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.28-35
    • /
    • 2021
  • Infrared (IR) stealth technology to protect aircraft from heat-tracking missiles is a very important factor in the development of military aircraft. In this study, the intensities of signal generation were compared by observing the IR signals generated from the plumes of the engine and identifying them for each measurement angle. To simulate a jet engine applied to an actual aircraft, a small turbojet engine was constructed, the infrared signal characteristics for each wavelength were identified according to the measurement angle, and the total infrared radiance was derived by integrating the signal for each wavelength. Through this study, we intend to present basic data for improving the infrared stealth performance of aircraft.

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape (무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석)

  • Noh, Sooyoung;Bae, Ji-Yeul;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

Analysis on Infrared Stealth Performance with Emissivity Controlled Aircraft Surface Structure at Various Background (항공기 적외선 스텔스 기술 적용을 위한 다양한 배경조건에서의 방사율 제어구조 성능 분석)

  • Bae, Munjang;Kim, Taehwan;Kim, Taeil;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.455-461
    • /
    • 2016
  • Survivability of an aircraft has been greatly threatened by the development of a weapon system using infrared. Therefore, the infrared stealth technology is a very important technique to improve the survivability of an aircraft. In this study, the infrared signal of an aircraft was analyzed which corresponding to the aircraft surface temperature and environmental conditions with various surface conditions(especially emissivity changed). Based on the analyzed infrared signal, the optimized surface emissivity was suggested to reduce the average contrast radiance and contrast radiant intensity(CRI). In addition, we confirmed that the infrared contrast radiant intensity between the aircraft and the background can be minimized through an appropriately controlled surface emissivity of the aircraft at specific background.

육상-탱크, 기동력 등에 응용 시작

  • 한국항공우주산업진흥협회
    • Aerospace Industry
    • /
    • v.64
    • /
    • pp.32-35
    • /
    • 1998
  • 항공기에 의한 공중 방어를 위한 스텔스화가 선진국에서 점차 일반화되는 추세에 따라 지상군의 탱크나 각종 차량 그리고 대포에 이르기까지 레이더나 적외선등 탐지 수단에 발견되지 않도록 하는 스텔스화가 조용히 진행중이다.

  • PDF

Infrared Signal Measurement with Bypass Ratio in a Small Engine Simulating a Turbofan (터보팬을 모사한 소형 엔진에서의 바이패스 비에 따른 적외선 신호 측정)

  • Choi, Jaewon;Jang, Hyeonsik;Kim, Hyemin;Choi, Seongman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.34-42
    • /
    • 2020
  • In modern air combat, infrared signals play an important role in the detection of opponents and must be reduced to improve survivability and stealth. In particular, IR signals generated in the wake of aircraft engines have high intensity and short wavelengths, so most heat-tracking missiles detect these signals. Accordingly, the measurement and characteristic analysis of Gas radiation signals from the engine's wake were carried out in this study. Micro turbojet engine has been configured to simulate a real aircraft turbofan engine, and the characteristics of IR signal reduction by adjusting the bypass ratio were identified. Through this, the IR signal characteristics for each wavelength are analyzed and verification of signal reduction technologies is performed.

Infrared Signature Analysis on a Flat Plate by Using the Spectral BRDF Data (파장별 BRDF 데이터를 이용한 평판의 적외선 복사휘도 특성 분석)

  • Choi, Jun-Hyuk;Kim, Dong-Geon;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.577-585
    • /
    • 2010
  • This paper is a part of developing a software that predicts the infrared signal emitted from a ground object by considering solar irradiation. The radiance emitted from a surface can be calculated by using the temperature and optical characteristics of the surface object. The bidirectional reflectance distribution function (BRDF) is defined as the ratio of reflected radiance to incident irradiance. It is a very important surface reflection property that decides the reflected radiance from the object. In this paper, the spectral radiance received by a remote sensor over the mid-wave infrared(MWIR), and the long-wave infrared(LWIR) regions are computed and compared each other for several different materials. The results show that the optical surface properties such as the BRDF and the emissivity of the object surface can play a major role in generating the infrared signatures of various objects, and the largest infrared signal may reach up to 10 times the smallest one when the infrared signals obtained from a flat plate with different surface conditions under the sun light.

Effect of Flight Altitude on Minimal Infrared Signature of Combat Aircraft (고도 변화에 따른 전투기 적외선 신호 최소 조건 분석)

  • Nam, Juyeong;Chang, Injoong;Lee, Yongwoo;Kim, Jihyun;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.375-382
    • /
    • 2020
  • Owing to the rapid development of infrared guided weapon systems, the threat to aircraft survivability is constantly increasing, and research on infrared stealth technologies are being conducted to ensure aircraft survival. In this study, we analyze the minimum infrared signature of an aircraft according to its flight altitude by considering the characteristics of infrared guided missiles, which detect the contrast signature between the aircraft and background. We conducted computational fluid dynamics simulations for the convective coefficient, and heat transfer simulations were performed considering convection, conduction, and radiation for flight conditions. Thus, we obtained the surface temperature distribution of the aircraft and analyzed the aircraft infrared signature based on the flow characteristics around it. Furthermore, the optimum emissivity for the minimum infrared signature was derived, and the effect of the infrared signature was analyzed when this optimum emissivity was applied to the fuselage surface for each flight condition.

Analysis of MWIR and LWIR Signature of Supersonic Aircraft to Air-to-air and Surface-to-air Missile by Coupled Simulation Method (통합해석기법을 활용한 공대공 및 지대공 적외선 미사일 대응 초음속 항공기의 중적외선 및 원적외선 신호 분석)

  • Kim, Taehwan;Bae, Ji-Yeul;Kim, Taeil;Jung, Daeyoon;Hwang, Chang Su;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.764-772
    • /
    • 2014
  • The stealth performance of supersonic aircraft in recent air battlefield is one of the most significant feature for latest fighters. Especially, as the technology is advancing, the IR stealth capability becomes more important because of its passive characteristic. To design an aircraft with stealth capability, we must know how much the IR signature is generated from the aircraft. Also, predicting the IR signature of enemy's aircraft is tactically crucial. In this study, we calculated MWIR and LWIR infrared signature of $5^{th}$ generation supersonic aircraft against air-to-air and surface-to-air threat using IR simulation code and CFD coupled procedure.

A Study on Effect of the Solar Elevation on the Ship IR Signature (태양고각 변화에 따른 함정 적외선신호에 관한 연구)

  • Kim, Yoon-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.38-45
    • /
    • 2010
  • A study on the infrared signature of a naval ship by the solar elevation was performed using the well known IR signature analysis software, ShipIR/NTCS. The contrast radiant intensity of a ship against the Eastern Sea background from sunrise to noon was investigated. Monthly averaged climate data for both January and July were applied to investigate the seasonal change in the signature. A study on the signature for different ship speeds was also carried out. Simulation results showed that the maximum signature in both wave-bands for a sea-level observer occurred at around 25~35 degrees of solar elevation and was highly dependent on the ship geometry rather than the solar irradiance.