DOI QR코드

DOI QR Code

Analysis on Infrared Stealth Performance with Emissivity Controlled Aircraft Surface Structure at Various Background

항공기 적외선 스텔스 기술 적용을 위한 다양한 배경조건에서의 방사율 제어구조 성능 분석

  • Bae, Munjang (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Kim, Taehwan (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Kim, Taeil (Department of Mechanical Engineering, Yonsei Univ.) ;
  • Jung, Daeyoon (The 3rd Research and Development Institute, Agency for Defense Development) ;
  • Cho, Hyung Hee (Department of Mechanical Engineering, Yonsei Univ.)
  • 배문장 (연세대학교 기계공학과) ;
  • 김태환 (연세대학교 기계공학과) ;
  • 김태일 (연세대학교 기계공학과) ;
  • 정대윤 (국방과학연구소 제3기술연구본부) ;
  • 조형희 (연세대학교 기계공학과)
  • Received : 2016.08.08
  • Accepted : 2016.08.25
  • Published : 2016.10.30

Abstract

Survivability of an aircraft has been greatly threatened by the development of a weapon system using infrared. Therefore, the infrared stealth technology is a very important technique to improve the survivability of an aircraft. In this study, the infrared signal of an aircraft was analyzed which corresponding to the aircraft surface temperature and environmental conditions with various surface conditions(especially emissivity changed). Based on the analyzed infrared signal, the optimized surface emissivity was suggested to reduce the average contrast radiance and contrast radiant intensity(CRI). In addition, we confirmed that the infrared contrast radiant intensity between the aircraft and the background can be minimized through an appropriately controlled surface emissivity of the aircraft at specific background.

적외선을 이용한 무기체계의 발달로 인해 항공기의 생존은 큰 위협에 직면해 있다. 따라서 항공기의 생존성 향상을 위해서 적외선 스텔스 기술이 매우 중요하다. 본 논문에서는 수치해석을 통해 실제 비행환경에서의 항공기 표면온도 및 주위 배경에 따른 적외선 신호를 분석하고 이를 바탕으로 적외선 스텔스를 위한 항공기 표면 구조체 방사율의 가이드라인을 제시하고 그 성능을 검증하고자 한다. 수치해석 결과, 주위 배경에 따라서 항공기 표면 방사율을 최적화한다면 항공기와 배경간의 복사대비강도를 감소시킬 수 있음을 확인하였다.

Keywords

References

  1. Ab-Rahman, M.S., Hassan, M.R. (2009) Lock-on Range of Infrared Heat Seeker Missile, Int. Conf. Electr. Eng. & Inform., 2, pp.472-477.
  2. Gao, S., Jin, W., Wang, J., Wang, H., Li, H., Guo, A. (2010) Study on Camouflage Effect of Targets with Different Characteristics under Typical Background, 5th Int. Sympo. Adv. Optical Manuf. & Testing Tech., Proc. of SPIE, 7656, 765652-1.
  3. Heo, N.J., Yoo, J.H. (2015) Infrared Reflector Design using the Phase Field Method for Infrared Stealth Effect, J. Comput. Struct. Eng. Inst. Korea 28(1), pp.63-69. https://doi.org/10.7734/COSEIK.2015.28.1.63
  4. Kim, T., Bae, J.Y., Kim, T., Jung, D., Hwang, C.S., Cho, H.H. (2014) Analysis of MWIR and LWIR Signature of Supersonic Aircraft to Air-to-air and Surface-to-air Missile by Coupled Simulation Method, J, Korea Inst, Mil. Sci, & Tech., 17(6), pp.764-772. https://doi.org/10.9766/KIMST.2014.17.6.764
  5. Mahulikar, S.P., Potnuru, S.K., Rao, G.A. (2009) Study of Sunshine, Skyshine, and Earthshine for Aircraft Infrared Detection, J. Opt., A: Pure & Appl. Opt., 11(4), 045703. https://doi.org/10.1088/1464-4258/11/4/045703
  6. Mahulikar, S.P., Sonawane, H.R., Rao, G.A. (2007) Infrared Signature Studies of Aerospace Vehicles, Prog. Aerosp. Sci., 43(7), pp.218-245. https://doi.org/10.1016/j.paerosci.2007.06.002
  7. Pan, X., Wang, X., Wang, R., Wang, L. (2015) Infrared Radiation and Stealth Characteristics Prediction for Supersonic Aircraft with Uncertainty, Infra. Phys. & Tech., 73, pp.238-250. https://doi.org/10.1016/j.infrared.2015.09.012
  8. Yunpeng, M., Pei, Z. (2015) Calculation and Analysis of Aircraft Infrared Detection Probability under the Single Background, IIICEC.
  9. YUNUS, A. Cengel; AFSHIN, J. GHAJAR. (2007) Heat and Mass Transfer, Mc Graw Hill, New York.