• Title/Summary/Keyword: 저항소결

Search Result 196, Processing Time 0.03 seconds

Study on the Sinter Plant Micro Pulse System of Control Algorithm. (소결공장의 Micro Pulse 하전 제어기법에 관한 연구)

  • Kim M. H.;Hwang G. H.;Choi C. H.;Hong Y. K.;Jang S. D.;Son Y. G.;Oh J. S.;Cho M. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.146-150
    • /
    • 2001
  • 전기집진기는 여타의 집진 설비에 대한 집진 효율과 유지 보수성이 우수한 설비이며 소결공장의 배출분진과 같은 고온($120{\~}160^{\circ}C$)의 미세분자($5{\~}12{\mu}m$) 및 고비저항($10^{12}{\~}10^{13} {\Omega}cm$)을 포집할 때 DC 하전에 비해 Pulse 하전이 효과적이며 Energy 절감이($60{\~}90\%$) 된다. 본 논문은 소결공장의 DC 하전에서 Pulse 하전으로 전환 시 EP 특성 및 부하변화에 따른 제어방안을 제시한다. 현재 제철소의 소결 전기집진기 경우 정수 직후에는 전압이 정상적으로 공급하다가 시간이 지남에 따라서 DC 전압이 낮아지고 Back Corona 현상이 발생하여 서서히 분진농도는 급격히 상승하는 문제점을 가지고 있다. 이에 비해 Pulse 하전으로 운전할 경우에는 Back Corona 현상 발생억제로 출구농도 상승 기울기를 조장방법 및 Ramping 장치와 관련장치 등을 최적으로 운용할 수 있는 방법을 소결공장 실험하였다.

  • PDF

Effect of heat treatment and sintered microstructure on electrical properties of Mn-Co-Ni oxide NTC thermistor for fuel level sensor (연료액위센서용 Mn-Co-Ni 산화물계 서미스터의 전기적 특성에 미치는 열처리 및 소결미세구조에 관한 연구)

  • 나은상;백운규;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The correlationship between heat treatment condition and electrical properties of the Mn-Co-Ni oxide NTC thermistor for fuel level sensor was investigated by the X-ray diffractometry, density measurement, and electrical properties measurement such as resistivity, B constant, and thermal dissipation constant. It was shown that the heat treatment of NTC thermistor was responsible for sinterability of Mn-Co-Ni oxide. The highest density of 5.10 g/㎤ was obtained at $1250^{\circ}C$, 2 hours, at which the densification was almost completed. This is also manifested from the microstructural observation. It is found that the electrical resistivity and B constant are increased at the elevated sintering temperatures. The NTC specimens prepared in this study showed the conventional decrease of resistance with the measured temperature and the linear behavior of output voltage with fuel levels. Therefore, the electrical properties of thermistor were closely correlated with sintering condition. and the Mn-Co-Ni oxide thermistor prepared in this study has a great possibility enough to apply for an automobile fuel level sensor.

Preparation and characterization of Mn-Co-Ni NTC thermistor (Mn-Co-Ni계 NTC 서미스터 제조 및 특성)

  • Lee, Jung-Il;Kim, Tae Wan;Shin, Ji Young;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.80-84
    • /
    • 2015
  • Mn-Co-Ni oxide system has been used as the NTC thermistors for normal temperature applications. Mn-Co-Ni oxide-based thermistors were sintered at different temperatures for a constant processing time from 900 to $1300^{\circ}C$ for 3 h. The crystal structure, bulk density, microstructure and chemical composition were characterized by XRD, FE-SEM and WD-XRF. The plot of the resistance versus measuring temperature was characterized for the sintered sample at the $1250^{\circ}C$. Moreover, the relationship between log resistivity and reciprocal of absolute temperature of the NTC thermistor was investigated.

The Study of Magnetic Properties of Ni-Zn-Cu Ferrite by variation of Low Temperature Sintered (저온소결 온도변화에 따른 Ni-Zn-Cu 페라이트의 자기적 특성 연구)

  • Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.232-237
    • /
    • 2007
  • We have synthesized the low temperature sintered of Ni-Zn-Cu ferrite with nonstoichiometric composition a little deficient in $Fe_2O_3$ from $(Ni_{0.2}Cu_{0.2}Zn_{0.6})_{1+x}(Fe_2O_3)_{1-x}$. For low loss and acceleration of grain growth $TiO_2$ and $Li_2CO_3$ was added from 0.25 mol% to 1.0 mol%. The mixture of the law materials was calcinated and milled. The compacts of toroidal type were sintered at different temperature $(875^{\circ}C,\;900^{\circ}C,\;925^{\circ}C\;950^{\circ}C)$ for 2 hours in air followed by an air cooling. Then, effects of composition and sintering temperatures on the physical properties such as density, resistivity, magnetic induction, coercive force, initial permeability, and quality factor of the Ni-Zn-Cu ferrite were investigated. The density of the Ni-Zn-Cu ferrite was $4.85\sim5.32g/cm^3$, resistivity revealed $10^8\sim10^{12}\Omega-cm$. The magnetic properties obtained from the aforementioned Ni-Zn-Cu ferrite specimens were 1,300 gauss for the maximum induction, 4.5 oersted for the coercive force, 275 for the initial permeability, and 83 for the quality factor. The physical properties indicated that the specimens could be utilized as the core of high frequency range (involved microwave range) communication and deflection yoke of T.V.

Laser Sintering of Inkjet-Printed Silver Lines on Glass and PET Substrates (유리와 PET 기판에 잉크젯 인쇄된 실버 도선의 레이저 소결)

  • Kim, Myong-Ki;Kang, Heui-Seok;Kang, Kyung-Tae;Lee, Sang-Ho;Hwang, Jun-Young;Moon, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.975-982
    • /
    • 2010
  • In this study, the laser sintering of inkjet-printed silver lines was evaluated. Silver-nanoparticle ink and a drop-ondemand (DOD) inkjet printer were used for printing on glass and polyethylene terephthalate (PET) substrates with various thicknesses. To sinter the printed silver nanoparticles, the silver layer printed on the transparent substrates was irradiated by focused CW laser beams that were incident normal to the substrates; the irradiation was carried out for various beam intensities and for various irradiation times. The electrical conductivity of the laser-sintered silver patterns was measured and compared with the conductivity of silver patterns sintered by using an oven. The increase in the temperature caused by laser irradiation was also calculated on the basis of the laser beam intensity, irradiation time, surface reflectivity, and thermophysical property of the substrate in order to estimate the increase in the electrical conductivity caused by laser sintering.

Preparation and Characterization of Microfiltration Membrane by Metal Particles (금속입자를 이용한 정밀여과막 제조와 특성평가)

  • Kim, In-Chul;Lee, Kew-Ho;Park, Joo-Young;Jeong, Bo-Reum;Kwon, Ja-Young
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.381-386
    • /
    • 2007
  • Hollow fibers were made using the nickel slurry containing nickel particles and polymers by phase inversion method. And then, metallic filters were fabricated by sintering method at $1,150^{\circ}C$ under reduction condition. Metallic microfiltration membranes were prepared by coating nickel particles on the metallic filter. The properties of the metallic hollow fiber filters and microfiltration membranes such as pore size and strength were investigated. The metallic membrane showed good resistance against acid, base and chlorine. It was observed that the membrane exhibited good recovery rate by back washing.

Flaw Tolerance of (Y,Nb)-TZP/${Al_2}{O_3}$Composites ((Y,Nb)-TZP/${Al_2}{O_3}$복합체의 결함 저항성)

  • 이득용;김대준;이명현;장주웅
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • 90.24 mol% ZrO$_2$-5.31 mol% $Y_2$O$_3$-4.45 mol% Nb$_2$O$_{5}$ 조성의 (Y,Nb)-TZP와 (Y,Nb)-TZP/Al$_2$O$_3$복합체를 155$0^{\circ}C$~1$600^{\circ}C$에서 1~2시간 소결하여 제조하였다. 시편의 결함에 대한 저항성을 조사하기 위하여 R-curve, Weibull modulus, slow crack growth 변수 등을 조사하였다. 실험결과, (Y,Nb)-TZP와 (Y,Nb)-TZP/Al$_2$O$_3$복합체 모두 상용 3Y-TZP 보다 우수한 결함 저항성이 관찰되었다. (Y,Nb)-TZP/Al$_2$O$_3$복합체의 결함 저항성은 $Al_2$O$_3$첨가에 의한 결정립 가교 인화, 분산강화, R-curve 효과에 의한 것으로 추정된다.

  • PDF

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.