DOI QR코드

DOI QR Code

Laser Sintering of Inkjet-Printed Silver Lines on Glass and PET Substrates

유리와 PET 기판에 잉크젯 인쇄된 실버 도선의 레이저 소결

  • Kim, Myong-Ki (Fusion technology R&D division, Korea institute of industrial technology) ;
  • Kang, Heui-Seok (Fusion technology R&D division, Korea institute of industrial technology) ;
  • Kang, Kyung-Tae (Fusion technology R&D division, Korea institute of industrial technology) ;
  • Lee, Sang-Ho (Fusion technology R&D division, Korea institute of industrial technology) ;
  • Hwang, Jun-Young (Fusion technology R&D division, Korea institute of industrial technology) ;
  • Moon, Seung-Jae (School of Mechanical Engineering, Hanyang Univ)
  • 김명기 (한국생산기술연구원 융복합기술연구본부) ;
  • 강희석 (한국생산기술연구원 융복합기술연구본부) ;
  • 강경태 (한국생산기술연구원 융복합기술연구본부) ;
  • 이상호 (한국생산기술연구원 융복합기술연구본부) ;
  • 황준영 (한국생산기술연구원 융복합기술연구본부) ;
  • 문승재 (한양대학교 기계공학부)
  • Received : 2010.03.24
  • Accepted : 2010.09.15
  • Published : 2010.11.01

Abstract

In this study, the laser sintering of inkjet-printed silver lines was evaluated. Silver-nanoparticle ink and a drop-ondemand (DOD) inkjet printer were used for printing on glass and polyethylene terephthalate (PET) substrates with various thicknesses. To sinter the printed silver nanoparticles, the silver layer printed on the transparent substrates was irradiated by focused CW laser beams that were incident normal to the substrates; the irradiation was carried out for various beam intensities and for various irradiation times. The electrical conductivity of the laser-sintered silver patterns was measured and compared with the conductivity of silver patterns sintered by using an oven. The increase in the temperature caused by laser irradiation was also calculated on the basis of the laser beam intensity, irradiation time, surface reflectivity, and thermophysical property of the substrate in order to estimate the increase in the electrical conductivity caused by laser sintering.

잉크젯으로 인쇄된 실버 도선의 레이저 소결에 관한 연구를 수행하였다. 요구적출(DOD) 방식의 잉크젯 프린터를 이용하여 서로 다른 두께의 유리와 PET 기판에 실버 나노 잉크를 이용한 미세 도선을 인쇄하였으며, 인쇄된 실버 도선에 집광된 레이저 빔을 조사하여 소결하였다. 레이저 강도와 조사 시간을 달리하여 소결된 실버 도선의 비저항을 측정하였으며, 오븐을 이용한 소결 처리 결과와 비교하였다. 단순화된 이론식으로부터 레이저 강도, 조사 시간, 표면 반사율 및 기판의 물성에 따른 온도 증가를 추산하였으며, 추산된 온도 증가와 레이저 소결에 의한 전기전도도 향상의 관계에 대하여 논의하였다.

Keywords

References

  1. Dearden, A. L., Smith, P. J., Shin, D. Y., Reis, N., Derby, B. and Brien, P., 2005, “A Low Curing Temperature Silver Ink for Use in Ink-Jet Printing and Subsequent Production of Conductive Tracks,” Micromol. Rapid Commun. Vol. 26, pp. 315-318. https://doi.org/10.1002/marc.200400445
  2. Scandurra, A., Indelli, G. F., Sparta, N. G., Galliano, F., Ravesi, S. and Pignataro, S., 2010, “Low-Temperature Sintered Conductive Silver Patterns Obtained by Inkjet Printing for Plastic Electronics,” Surf. Interface Anal., Vol. 42, pp. 1163-1167. https://doi.org/10.1002/sia.3229
  3. Zeng, P., Zajac, S., Clapp, P. C. and Rifkin, J. A., 1998, “Nanoparticle Sintering Simulations,” Materials Science and Eng. Vol. A252, pp. 301-306.
  4. Perelaer, J., de Gans, B. J. and Schubert, S., 2006, “Ink-Jet Printing and Microwave Sintering of Conductive Silver Tracks,” Adv. Matter. Vol. 18, pp. 2101-2104. https://doi.org/10.1002/adma.200502422
  5. Kim, Y. S., Lee, T. J., Yoo, W. H., Chang, B. G., Park, S. Y. and Oh, Y. S., 2007, “A Study of Post Electrode Formation by Microwave Sintering in LTCC Substrate,” J. of the Microelectronics & Packaging Society, Vol. 14, pp. 43-48.
  6. Allen, M. L., Aronniemi, M., Mattila, T., Alastalo, A., Ojanpera, K., Suhonen, M. and Seppa, H., 2008, “Electrical Sintering of Nanoparticle Structures,” Nanotechnology, Vol. 19, pp. 175201-1-175201-4. https://doi.org/10.1088/0957-4484/19/17/175201
  7. Jun, B. C., Kim, B. C. and Kim, J. D., 1996, “A Study on the Selective Sintering by $CO_2$ Laser.” Trans. of the KSME(A), Vol. 2, pp. 1100-1105.
  8. Agarwala, M., Bourell, D., Beaman, J., Marcus, H. and Barlow, J., 1995, “Direct Selective Laser Sintering of Matels,” Rapid Prototyping Journal, Vol. 1, pp. 26-36. https://doi.org/10.1108/13552549510078113
  9. Kruth, J. P., Wang, X., Laoui, T. and Froyen, L., 2003, “Lasers and Materials in Selective Laser Sintering,” Assembly Automation, Vol. 23, pp. 357-371. https://doi.org/10.1108/01445150310698652
  10. Chung, J. W., Ko, S. H., Bieri, N. R., Grigopoulos, C. P. and Poulikakos, D., 2004, “Conductor Microstructures by Laser Curing of Printed Gold Nanoparticle Ink,” Appl. Phys. Lett. Vol. 84, No. 5, pp. 801-803. https://doi.org/10.1063/1.1644907
  11. Bieri, N. R., Chung, J., Haferl, S. E., Poulikakos, D., and Grigopoulos, C. P., 2003, “Microstructuring by Printing and Laser Curing of Nanoparticle Solutions,” Appl. Phys. Lett. Vol. 82, No. 20, pp. 3529-3531. https://doi.org/10.1063/1.1575502
  12. Bieri, N. R., Chung, J., Poulikakos, D. and Grigopoulos, C. P., 2004, “Manufacturing of Nanoscale Thickness Gold Lines by Laser Curing of a Discretely Deposited Nanoparticle Suspension,” Superlattices and Microstructures, Vol. 35, pp. 437-444. https://doi.org/10.1016/j.spmi.2003.09.006
  13. Marinov, V. R., 2004, “Electrical Resistance of Laser Sintered Direct-Write Deposited Materials for Microelectronic Applications,” J. Microelectronics Electronic Packaging, Vol. 1, pp. 261-268. https://doi.org/10.4071/1551-4897-1.4.261
  14. Wee, S. K., Oh. S. Y., Lee, J. Y., Lee, Y. S. and Chung, J. W., 2006, “A Study on Droplet Formation from Piezo Inkjet Print Head,” Trans. of the KSME(B), Vol. 30, pp. 1003-1011.
  15. Janssen, L. P. B. M. and Warmoeskerken, M. M. C. G., 2006, Transport Phenomena data Companion, 3rd ed., Delft, ISBN: 90-407-1302-2
  16. Yin, W., Lee, D. H., Choi, J. S., Park, C. H. and Cho, S. M., 2008, “Screen Printing of Silver Nanoparticle Suspension for Metal Interconnects,” Korean J. Chem. Eng. Vol. 25, pp. 1358-1361. https://doi.org/10.1007/s11814-008-0223-y
  17. Yoon, Y. H., Yi, S.-M., Yim, J.-R., Lee, J.-H., Rozgonyi, G. and Joo, Y.-C., 2010, “Microstructure and Electrical Properties of High Power Laser Thermal Annealing on Inkjet-Printed Ag Films,” Microelectronic Eng., Vol. 87, pp. 2230-2233. https://doi.org/10.1016/j.mee.2010.02.008
  18. Khan, A., Rasmussen, N., Marinov, V. and Swenson, O. F., 2008, “Laser Sintering of Direct Write Silver Nano-Ink Conductors for Microelectronic Applications” Proc. SPIE, Vol. 6879, pp. 687910-687911. https://doi.org/10.1117/12.759164
  19. Incropera, F. P. and De Witt, D. P., 2002, Fundamentals of Heat and Mass Transfer, 5th ed., Ch. 5, John Wiley and Sons, Inc., Hoboken
  20. Kim, T. Y., Hwang, J. Y. and Moon, S. J., 2010, “Laser Curing of the Silver/Copper Nanoparticle Ink via Optical Property Measurement and Calculation,” Japanese J. Appl. Phys., Vol. 49, pp. 05EA09-1-05EA09-6. https://doi.org/10.1143/JJAP.49.05EA09

Cited by

  1. Oven Sintering Process Optimization for Inkjet-Printed Ag Nanoparticle Ink vol.3, pp.2, 2013, https://doi.org/10.1109/TCPMT.2012.2226458
  2. Electrical Performance Characterization of an Inkjet-Printed Flexible Circuit in a Mobile Application vol.3, pp.9, 2013, https://doi.org/10.1109/TCPMT.2013.2261774