• Title/Summary/Keyword: 저전력 알고리즘

Search Result 455, Processing Time 0.027 seconds

Method for Power control of Wired and Wireless linkage Sensor Network for Low-power Wireless network (저전력 무선 네트워크를 위한 유무선 연동 센서 네트워크의 전력 제어 방법)

  • Lee, Kyung-Sook;Kim, Hyun-Deok
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, using a new low-power consumption method for ZigBee device, which consume low-power using an output power control algorithm through RSSI monitoring as interlocking wireless network using ZigBee which has advantages of a low-power consumption, a low-cost, a compatibility and a draft international standardization enacted by IEEE and ZigBee Alliance, with wired network using built coaxial cable to overcome the disadvantage of the existing wireless sensor network, is proposed. Effectiveness of the output power control algorithm through RSSI monitoring has been verified by experimentation for more optimized low-power consumption.

Transition Decision Algorithm for Energy Saving in OBS Network with LPI (저전력 대기를 사용하는 OBS 망에서 에너지 절감을 위한 상태 천이 결정 알고리즘)

  • Kang, Dong-Ki;Yang, Won-Hyuk;Lee, Ki-Beom;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.317-326
    • /
    • 2012
  • Recently, many researchers have studied to solve the energy consumption of network equipments since the interest of Green IT has been increased. In this paper, we apply Low Power Idle (LPI) to OBS network to reduce energy consumption of network devices. Many previous researches have focused on maximizing the sleep time of network equipments to increase the energy saving efficiency of LPI. But transition overhead caused by LPI might not only depreciate the performance of energy saving but also increase packet delay. In this paper, Transition Decision (TD) algorithm is proposed to improve energy saving efficiency by reducing the number of unnecessary transition and guarantee the required QoS such as packet delay. To evaluate the performance of proposed algorithm, we model OBS edge router with LPI by OPNET and analyze the performance of the proposed algorithm in views of energy saving, transition count and average packet delay.

A design of low power structures of texture caches for mobile 3D graphics accelerator (모바일 3D 그래픽 가속기를 위한 저전력 텍스쳐 캐쉬 구조 설계)

  • Kim, Young-Sik;Lee, Jae-Young
    • Journal of Korea Game Society
    • /
    • v.6 no.4
    • /
    • pp.63-70
    • /
    • 2006
  • This paper studied various low power structures of texture caches for mobile 3D graphics accelerator to reduce the memory latency of texture data. Also the paper designed the texture cache with the variable threshold values of power mode transition according to the filtering algorithms. In the trace driven simulation, we compared the performance of those structures using Quake game engine as the benchmark. Also the algorithm was proposed and verified by the simulation, which has variable threshold values of power mode transitions according to the selected texture filtering method.

  • PDF

Mesh Routing Algorithm for TDMA Based Low-power and Ad-hoc Networks (TDMA 기반 저전력 애드혹 네트워크를 위한 메쉬 라우팅 알고리즘)

  • Hwang, Soyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1955-1960
    • /
    • 2014
  • Many routing protocols have been proposed for low-power and ad-hoc networks to deliver command or data among nodes and recently, various researches are carried out about networking scheme considering reliability and scalability. In low-power networking technology, the performance of network layer is closely connected with the operation of data link layer and mesh routing mechanisms based on TDMA MAC are considered for reliability and scalability. This paper proposes mesh routing algorithm utilizing the characteristics of TDMA MAC and topological addressing in TDMA based low-power and ad-hoc networks and implementation results are presented.

Low-Energy Intra-Task Voltage Scheduling using Static Timing Analysis (정적 시간 분석을 이용한 저전력 태스크내 전압 스케줄링)

  • Sin, Dong-Gun;Kim, Ji-Hong;Lee, Seong-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.561-572
    • /
    • 2001
  • Since energy consumption of CMOS circuits has a quadratic dependency on the supply voltage, lowering the supply voltage is the most effective way of reducing energy consumption. We propose an intra-task voltage scheduling algorithm for low-energy hard real-time applications. Based on a static timing analysis technique, the proposed algorithm controls the supply voltage within an individual task boundary. By fully exploiting all the slack times, as scheduled program by the proposed algorithm always complete its execution near the deadline, thus achieving a high energy reduction ratio. In order to validate the effectiveness of the proposed algorithm, we built a software tool that automatically converts a DVS-unaware program into an equivalent low-energy program. Experimental results show that the low-energy version of an MPEG-4 encoder/decoder (converted by the software tool) consumes less than 7~25% of the original program running on a fixed-voltage system with a power-down mode.

  • PDF

Obstacle Avoidance Algorithm of Hybrid Wheeled and Legged Mobile Robot Based on Low-Power Walking (복합 바퀴-다리 이동형 로봇의 저전력 보행 기반 장애물 회피 알고리즘)

  • Jeong, Dong-Hyuk;Lee, Bo-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.448-453
    • /
    • 2012
  • There are many researches to develop robots that improve its mobility to adapt in various uneven environments. In the paper, a hybrid wheeled and legged mobile robot is designed and a obstacle avoidance algorithm is proposed based on low power walking using LRF(Laser Range Finder). In order to stabilize the robot's motion and reduce energy consumption, we implement a low-power walking algorithm through comparison of the current value of each motors and correction of posture balance. A low-power obstacle avoidance algorithm is proposed by using LRF sensor. We improve walking stability by distributing power consumption and reduce energy consumption by selecting a shortest navigation path of the robot. The proposed methods are verified through walking and navigation experiments with the developed hybrid robot.

A Low Power Algorithm using State Transition Ready Method (상태 전환 준비 방법을 이용한 저전력 알고리즘)

  • Youn, Choong-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.971-976
    • /
    • 2014
  • In this paper, we proposed a low power algorithm using state transition ready method. The proposed algorithm defined a sleep state, a idle state and a run state for the task. A state transition occurring at the time due to the delay time created in order to reduce the power consumption state in the middle of each inserted into the ready state. The ready state considering a power consumption and a delay time in state transition. A scheduling step of performing the steps in excess of the increasing problems have the delay time is long. The power consumption increased for the operation step increase. A state transition from a sleep state with the longest delay time in operating state occurs when the state is switched by the time delay caused by the increase in operating time reduces the overall power consumption reduced. Experiments [6] were compared with the results of the power consumption. The experimental results [6] is reduced power consumption than the efficiency of the algorithm has been demonstrated.

A Study on Low Power Design of SVM Algorithm for IoT Environment (IoT 환경을 위한 SVM 알고리즘 저전력화 방안 연구)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.73-74
    • /
    • 2017
  • SVM(Support Vector Machine) 알고리즘은 대표적인 기계 학습 분류 알고리즘으로 감정 분석, 제스처 인식 등 다양한 분야의 문제를 해결하기 위해 사용되고 있다. SVM 알고리즘은 분리경계면(Hyper-Plane) 또는 분리경계면 집합 중 지지벡터(Support Vector)라 불리는 특정한 점들로 이루어진 두 그룹 간의 거리 차이(Margin)를 최대로 하는 분리경계면을 이용하여 데이터를 분류하는 알고리즘이다. 높은 정확도를 제공하지만 처리 속도가 느리며 학습을 위해 대량의 데이터 및 메모리가 필요하기 때문에 자원이 제한적인 IoT 환경에서 사용이 어렵다. 본 논문에서는 자원이 제한된 IoT 노드를 기반으로 효율적으로 데이터를 학습하기 위해 K-means 알고리즘을 이용하여 SVM 알고리즘의 저전력화 방안을 연구한다.

  • PDF

Fast Adaptation Techniques of Compensation Coefficient of Active Noise Canceller using Binary Search Algorithm (이진 탐색 알고리즘을 이용한 능동 노이즈 제거용 보정 계수 고속 적용 기법)

  • An, Joonghyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1635-1641
    • /
    • 2021
  • Portable systems with built-in active noise control is required low power operation. Excessive anti noise search operation can lead to rapid battery consumption. A method that can adaptively cancel noise according to the operating conditions of the system is required and the methods of reducing power are becoming very important key feature in today's portable systems. In this paper, we propose the method of active noise control(ANC) using binary search algorithm in noisy systems. The implemented architecture detects a frequency component considered as noise from the input signal and by using the binary search algorithm, the system find out an appropriate amplitude value for anti-noise in a much faster time than the general linear search algorithm. Through the experimental results, it was confirmed that the proposed algorithm performs a successful functional operation.

Design of Low Power Error Correcting Code Using Various Genetic Operators (다양한 유전 연산자를 이용한 저전력 오류 정정 코드 설계)

  • Lee, Hee-Sung;Hong, Sung-Jun;An, Sung-Je;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.180-184
    • /
    • 2009
  • The memory is very sensitive to the soft error because the integration of the memory increases under low power environment. Error correcting codes (ECCs) are commonly used to protect against the soft errors. This paper proposes a new genetic ECC design method which reduces power consumption. Power is minimized using the degrees of freedom in selecting the parity check matrix of the ECCs. Therefore, the genetic algorithm which has the novel genetic operators tailored for this formulation is employed to solve the non-linear power optimization problem. Experiments are performed with Hamming code and Hsiao code to illustrate the performance of the proposed method.