• Title/Summary/Keyword: 저잡음

Search Result 740, Processing Time 0.028 seconds

A New RF Test Circuit on a DFT Technique (DFT 방법을 위한 새로운 고주파 검사 회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.902-905
    • /
    • 2006
  • This paper presents a new RF testing scheme based on a design-for-testability (DFT) method for measuring functional specifications of RF integrated circuits (IC). The proposed method provides input impedance. gain, noise figure. input voltage standing wave ratio (VSWR) and output signal-to-noise ratio (SNR) of a low noise amplifier (LNA). The RF test scheme is based on theoretical expressions that produce the actual RF device specifications by output DC voltages from the DR chip.

  • PDF

Design of 77-GHz CMOS Voltage-Controlled Oscillator with Low-Phase Noise (저 위상잡음을 가진 77-GHz CMOS 전압제어발진기 설계)

  • Sung, Myeong-U;Chun, Jae-Il;Choi, Ye-Ji;Kil, Keun-Pil;Kim, Shin-Gon;Kurbanov, Murod;Samira, Delwar Tahesin;Siddique, Abrar;Ryu, Jee-Youl;Noh, Seok-Ho;Yoon, Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.467-468
    • /
    • 2019
  • 본 논문은 차량용 장거리 레이더를 위한 저 위상잡음 77GHz CMOS 전압제어발진기를 제안한다. 이러한 회로는 낮은 위상잡음을 가지도록 설계되어 있고, 1.5볼트 전원에서 동작한다. 제안한 회로는 TSMC $0.13{\mu}m$ 고주파 CMOS 공정으로 설계하였다. 제안한 회로는 최근 발표된 연구결과에 비해 저 위상잡음, 저 전력 및 적은 면적 특성을 보였다.

  • PDF

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

A Design and Implementation of a Transceiver for LMDS Using the Monolithic Duplexer (모노리딕 듀플렉서형의 LMDS(Local Multi-point Distribution Service)용 송수신기 모듈의 설계 및 구현)

  • 오인열;정구희;나극환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8A
    • /
    • pp.1417-1427
    • /
    • 2001
  • 본 논문에서는 밀리미터파를 이용하여 사용자에게 양방향 무선 멀티미디어의 구현을 가능케 하는 LMDS 송수신 모듈을 설계, 구현하였다. 제작된 LMDS 송수신 모듈은 신서사이져, 혼합기, 저잡음 증폭기, 고출력 증폭기, 듀플렉서 등으로 구성하였으며, 전체적으로는 전원부와 제어부를 통하여 이상여부를 감시하며, 송수신 모듈에 이상이 발생했을 때 이를 보호할 수 있도록 구현하였다. 여기서 DAVIC 표준에 맞도록 IF부 대역은 0.95∼1.45GHz의 500MHz 대역폭에서 동작하도록 제작하였고, 상하향 혼합기는 격리도 특성을 최대화하였으며, 이를 위해 하이브리드 링형을 이용한 다이오드 평형 구조를 적용하여 설계하였다. 혼합기로 주입되는 Local 주파수는 안정도가 높아야 함으로 유전체 공진형 발진기로 구현하였다. 또한 저잡음 증폭기와 고출력 증폭기는 정보통신부에서 공고한 3사 주파수 대역을 모두 수용할 수 있도록 24GHz∼26.5GHz의 대역에서 정상적인 동작을 할 수 있도록 설계하였으며, 특히 저잡음 증폭기는 잡음 환경에서 작은 신호를 손실 없이 얻을 수 있도록 잡음지수를 최소화하고, 30dB 이상의 충분한 이득이 구현되도록 하였다. 고출력 증폭기는 15dBm 이상의 출력을 송신하면서도 선형성에 문제가 없도록 혼변조왜곡(IMD) 특성을 고려하여 설계하였다. 그리고 듀플렉서는 우수한 주파수 선택도와 낮은 삽입손실 특성을 갖도록 송수신 필터 모두 5개의 공진기를 포함한 Chebyshev형 구조를 갖으며 생산성이 뛰어난 모노리딕형으로 구현하여, LMDS 송수신 성능을 구현하였다.

  • PDF

A New Design-for-Testability Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 새로운 구조의 검사용 설계회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.68-77
    • /
    • 2006
  • This paper presents a new Design-for-Testability (DfT) circuit for 4.5-5.5GHz low noise amplifiers (LNAs). The DfT circuit measures gain, noise figure, input impedance, input return loss, and output signal-to-noise ratio for the LNA without external expensive equipment. The DfT circuit is designed using 0.18m SiGe technology. The circuit utilizes input impedance matching and DC output voltage measurements. The technique is simple and inexpensive.

Design of a New RF Built-In Self-Test Circuit for 5.25GHz SiGe Low Noise Amplifier (5.25GHz 저잡음 증폭기를 위한 새로운 고주파 BIST 회로 설계)

  • 류지열;노석호;박세현;박세훈;이정환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.635-641
    • /
    • 2004
  • This paper presents a new low-cost RF Built-In Self-Test (BIST) circuit for measuring transducer voltage gain, noise figure and input impedance of 5.25GHa low noise amplifier (LNA). The BIST circuit is designed using 0.18${\mu}{\textrm}{m}$ SiGe technology. The test technique utilizes input impedance matching and output transient voltage measurements. The technique is simple and inexpensive. Total chip size has additional area of about 18% for BIST circuit.

  • PDF

A 30GHz Band MMIC Low Noise Amplifier for Satellite Communications (위성통신용 30GHz대 MMIC 저잡음증폭기의 설계 및 제작)

  • Lim, Jong-Sik;Yom, In-Bok;Yoo, Young-Geun;Kang, Sung-Choon;Nam, Sang-Wook
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.9
    • /
    • pp.13-20
    • /
    • 1999
  • A 2-stage MMIC(monolithic Microwave Integrated Circuits) LNA(Low Noise Amplifiers) at 30GHz hand has been designed and fabricated for the Ka-band Satellite Communications. The $0.15 {\mu}m$ with the width of $80 {\mu}m$ pHEMT technology was used for the fabrication of this MMIC LNA. Using the series feedback technique, ultra low noise and excellent S11 could be obtained at the same time without the cost of gain at 30GHz-band. The stability factors(Ks) for each stage and overall stage are greater than 1 at full frequency bands by the bias circuits and stabilization circuit. The measured performances, which agree well with the predicted performances, show this 2-stage MMIC LNA has the gain of more than 15.7dB and noise figure of less than 2.09dB over 29GHz to 33GHz.

  • PDF

Design of MMIC Variable Gain LNA Using Behavioral Model for Wireless LAM Applications (거동모델을 이용한 무선랜용 MMIC 가변이득 저잡음 증폭기 설계)

  • Park, Hun;Yoon, Kyung-Sik;Hwang, In-Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.697-704
    • /
    • 2004
  • This paper describes the design and fabrication of an MMIC variable gain LNA for 5GHz wireless LAN applications, using 0.5${\mu}{\textrm}{m}$ gate length GaAs MESFET transistors. The advantages of high gain and low noise performance of E-MESFETS and excellent linear performance of D-MESFETS are combined as a cascode topology in this design. Behavioral model equations are derived from the MESFET nonlinear current voltage characteristics by using Turlington's asymptote method in a cascode configuration. Using the behavioral model equations, a 4${\times}$50${\mu}{\textrm}{m}$ E-MESFET as a common source amplifier and a 2${\times}$50${\mu}{\textrm}{m}$ D-MESFET as a common gate amplifier are determined for the cascode amplifier. The fabricated variable gain LNA shows a noise figure of 2.4dB, variable gain range of more than 17dB, IIP3 of -4.8dBm at 4.9GHz, and power consumption of 12.8mW.

A S/C/X-Band GaN Low Noise Amplifier MMIC (S/C/X-대역 GaN 저잡음 증폭기 MMIC)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.430-433
    • /
    • 2017
  • This paper presents a S/C/X-band LNA MMIC with resistive feedback structure in 0.25 um GaN HEMT process. The GaN devices have advantages as a high output power device having high breakdown voltage, energy band gap and stability at high temperature. Since the receiver using the GaN device with high linearity can be implemented without a limiter, the noise figure of the receiver can be improved and the size of receiver module can be reduced. The proposed GaN LNA MMIC based on 0.25 um GaN HEMT device is achieved the gain of > 15 dB, the noise figure of < 3 dB, the input return loss of > 13 dB, and the output return loss of > 8 dB in the S/C/X-band. The current consumption of GaN LNA MMIC is 70 mA with the drain voltage 20 V and the gate voltage -3 V.

Fabrication and Characterization of Low Noise Amplifier using MCM-C Technology (MCM-C 기술을 이용한 저잡음 증폭기의 제작 및 특성평가)

  • Cho, H.M.;Lim, W.;Lee, J.Y.;Kang, N.K.;Park, J.C.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.61-64
    • /
    • 2000
  • We fabricated and characterized Low Noise Amplifier (LNA) using MCM-C (Multi-Chip-Module-Cofired) technology for 2.14 GHz IMT-2000 mobile terminal application. First, We designed LNA circuits and simulated it's high frequency characteristics using circuits simulator. For the simulation, we adopted high frequency libraries of all the devices used in LNA samples. By the simulation, Gain was 17 dB and Noise Figure was 1.4 dB. We used multilayer process of LTCC (Low Temperature Co-fired Ceramics) substrate and conductor, resistor pattern for the MCM-C LNA fabrication. We made 2 buried inductors, 2 buried capacitors and 3 buried resistors. The number of the total layers was 6. On the top layer, we patterned microstrip line and pads for the SMT device. We measured the high frequency characteristics, and the results were 14.7 dB Gain and 1.5 dB Noise Figure.

  • PDF