• Title/Summary/Keyword: 저온 양생

Search Result 37, Processing Time 0.024 seconds

Characteristics of Mortar at Low Temperature with De-icing Agency (시판 방동제의 저온 양생된 모르타르 특성)

  • 유성원;서정인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.33-38
    • /
    • 2002
  • Concrete placed under cold weather has some defects such as the decrease of initial strength by hydration delay, strength unrecovery at unhardened concrete freezing, and structural failure and crack by expansion pressure. So, in this study, we tried to evaluate the JIS mortar which was made under cold weather using de-icing agency. In mortar test, the do-icing agency increased compressive strength under standard curing, and the de-icing agency made by NaNO$_2$ gave the highest strength. However, as pre-curing time under 21$^{\circ}C$ was short, the de-icing agency made by NaNO$_2$ and Ca[NO$_3$]$_2$ had the highest strength.

  • PDF

A Study on the Strengths of Polyurethane Morthar Cured under Low Temperature Condition (저온양생한 폴리우레탄 모르타르의 강도특성에 관한 연구)

  • 오종석;정효석;박홍신;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.337-342
    • /
    • 1999
  • The Purpose of this study is to evaluate the strength characteristics of polyurethane(PUR) mortar cured under low temperature condition. PUR mortars are prepared with various catalyst content, methylene chloride(MC) content as a viscosity reducing agent, and curing age at low temperature condition of $0^{\circ}C$, -5$^{\circ}C$ and -1$0^{\circ}C$, tested for working life, compressive and flexural strengths. From the test results, the catalyst and MC contents affect the degree of hardening and blowing of PUR mortar. Strengths increase with an increasing catalyst content at low temperature. Flexural and compressive strength of PUR mortar are about 177kgf/$\textrm{cm}^2$ and 490kgf/$\textrm{cm}^2$ respectively at curing temperature of -1$0^{\circ}C$ with catalyst content of 0.4%. Therefore, it is apparent that this PUR mortars have a sufficient strengths for repair of concrete structures.

  • PDF

Development and Application of Concrete using Ground Granulated Blast Slag in Winter Season (동절기 슬래그 혼입 콘크리트의 실용화기술개발)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.256-257
    • /
    • 2014
  • Concrete made with ground granulated blast-furnace slag(GGBS) has many advantage, including improved durability, workability and economic benefits. GGBS concrete is that its strength development is considerably slower under standard 20℃ curing conditions than that of portland cement concrete, although the ultimate strength is higher for same water-binder ratio. GGBS is not therefore used in application where high early age strength is required. However, hydration of GGBS is much more sensitive to temperatures, the strength development of GGBS concrete is significantly enhanced.

  • PDF

Compressive Strength Properties of Concrete by the Form Material Change at 10 below Zero (양생온도 -10℃에서 거푸집 재료 변화에 따른 콘크리트의 압축강도 특성)

  • Choi, Si-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.107-108
    • /
    • 2016
  • When the construction in a low temperature, the concrete performance is deteriorated by frost damage at early age. In this study, the form utilizing heating sheet and insulation is measured the performance to prevent frost damage at 10 below zero. It produced five types of the form and to measure the temperature history and compressive strength. At first, form attached heating sheet showed the highest temperature. But the form attached vacuum insulation showed the highest temperature ever since 12hours. In the case of compressive strength, the form attached heating sheet + isopink(polystyrene foam board) showed the highest compressive strength. It was followed by vacuum insulation. As a result, the form utilizing insulation and heating sheet helped to prevent frost damage.

  • PDF

Characteristics of Concrete Strength Development Based on Cement Type and Curing Temperature in Cold-Weather Conditions (한중조건에서 시멘트 종류 및 양생온도별 콘크리트의 강도 발현 특성)

  • Han, Jun-Hui;Lim, Gun-Su;Lee, Hyeon-Jik;Park, Jae-Woong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.153-154
    • /
    • 2023
  • In this study, analyzed the difference in compressive strength of concrete under cold conditions, using the 28-day standard curing compressive strength as a reference and examining variations based on cement types and curing temperatures. The results showed that the strength difference based on curing temperatures reached up to 9MPa at 0℃. However, as the curing period progressed, the difference in strength due to curing temperature gradually diminished. These findings are anticipated to be valuable for concrete mixing and quality control in cold weather conditions.

  • PDF

Compressive Strength and Fluidity of Low Temperature Curable Mortar Using High Early Strength Cement According to Types of Anti-freezer, Accelerator for Freeze Protection and Water Reducing Agent (조강형시멘트를 사용한 저온경화형 모르타르의 압축강도 및 유동특성에 미치는 방동제, 내한촉진제 및 감수제의 영향)

  • Park, Jung-Hoon;Ki, Kyoung-Kuk;Lee, Han-Seung;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.405-412
    • /
    • 2016
  • In order to examine the possibility of practical use of concrete at low-temperature environment using high early strength cement with cold resistance admixture, an experimental study on workability, freezing temperature and compressive strength of the mortar with different types of anti-freezer, water reducing agent and accelerator for freeze protection at low-temperature were evaluated. Compressive strength was increased in use of anti-freezer, especially SN anti-freezer was higher than CN anti-freezer. 0min flow was increased, the 20min flow was decreased. And 20min flow was improved in use of FR, RT water reducing agent. CF, LS accelerator for freeze protection, regardless of the type of water reducing agent, compressive strength was increased.

Development Ultra Rapid Hardening Construction Materials on Cold Weather Environment Considering Curing Temperature (양생온도를 고려한 극한지용 초속경 건설재료 개발)

  • Cho, Hyun-Woo;Shin, Hyun-Seop;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weather. Recent studies are reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperature, which can be used as an alternative of severe cold weather concrete in arctic regions. This study developed the magnesia-phosphate composites that can be used in severe cold regions and suggested an appropriate mixture design from the experimental results.

A Study on Curing Methods for Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서 콘크리트 포장의 강도발현 촉진을 위한 양생방법 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.11-18
    • /
    • 2017
  • PURPOSES : This study investigates the effect on concrete pavement accordance with the curing methods in cool weather and supports the best method in the field. METHODS : Two field tests evaluated the curing methods of concrete pavement in cool weather. Firstly, five curing methods were tested, including normal curing compound, black curing compound, bubble sheet, curing mat, and curing mat covered with vinyl. Concrete maturity was compared from temperature data. Secondly, normal curing compound and curing mat with vinyl, which showed the best performance, were compared in terms of maturity and join condition index. RESULTS:From the field tests, it is an evident that curing mat with vinyl accelerated the concrete strength. Therefore, it is possible to conduct saw-cut works in cool weather, which minimizes damage on concrete at joint. CONCLUSIONS : For concrete pavement in cool weather, using curing mat with vinyl as the curing method could overcome the strength delay. Therefore, strength and durability problems on concrete at joint due to cool weather would be fewer in the future.

A Study on the improvement of Strength delay according to Low Temperature of Cold Weather Concrete (한중콘크리트의 저온에 의한 강도지연 개선연구)

  • Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • The cold weather concrete poured in the winter season can cause the problem of the Due to recent high-rise building is made. In this research, the nominal mix of the early strength in concrete tried to be set through the mixing proportion experiment for each empirical variable and each component strength properties for the early strength improvement tries to be examined. In the cold weather concrete experiment, the cement and high early strength (type3) cement improving in OPC than OPC was excellent. The polycarboxylic acid based compound was exposed to be excellent in the intensity revelation properties. Because the using of the fly ash was disadvantageous it was excluded from this experiment. It showed the optimum temperature for the intensity revelation up over $12^{\circ}C$.

  • PDF

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.