• Title/Summary/Keyword: 저온 냉각기

Search Result 96, Processing Time 0.029 seconds

Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition (병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구)

  • Kang In-Seak;Choi Dong-Kyu;Kim Taig-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.

Uncooled Metallic Thin-film Thermopile Infrared Detector (비냉각 금속 박막형 열전퇴 적외선 검지기)

  • Oh, Kwang-Sik;Cho, Hyun-Duk;Kim, Jin-Sup;Lee, Yong-Hyun;Lee, Jong-Hyun;Lee, Jung-Hee;Park, Se-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • Uncooled metallic thin-film thermopile infrared detectors have been fabricated, and the figures of merit for the detectors were examined. The hot junctions of a thermopile were prepared on a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-membrane which acts as a thermal isolation layer, the cold junctions on the membrane supported with the silicon rim which functions as a heat sink, and Au-black was used as an infrared absorber. Infrared absorbance of Au-black, which strongly depends on the chamber pressure during Au-evaporation and its mass per area, was found to be about 90 % in the wavelength range from 3${\mu}{\textrm}{m}$ to 14${\mu}{\textrm}{m}$. Voltage responsivity, noise equivalent power, and specific detectivity of Bi-Sb thermopile infrared detector at 5 Hz-chopping frequency were about 10.5V/W, 2.3 nW/Hz$^{1/2}$, 및 $1.9\times10^{7}$ cm.Hz$^{1/2}$/w at room temperature in air, respectively.

  • PDF

Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA (DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어)

  • Park, Chang-Han;Han, Jung-Soo;Chun, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.94-101
    • /
    • 2009
  • In this paper, we propose design of hardware based on a high speed digital signal processor (DSP) and a field programmable gate array (FPGA) for real-time suppression of fixed pattern noise (FPN) using hardware neural networks (HNN) in cooled infrared focal plane array (IRFPA) imaging system FPN appears a limited operation by temperature in observable images which applies to non-uniformity correction for infrared detector. These have very important problems because it happen serious problem for other applications as well as degradation for image quality in our system Signal processing architecture for our system operates reference gain and offset values using three tables for low, normal, and high temperatures. Proposed method creates virtual tables to separate for overlapping region in three offset tables. We also choose an optimum tenn of temperature which controls weighted values of HNN using mean values of pixels in three regions. This operates gain and offset tables for low, normal, and high temperatures from mean values of pixels and it recursively don't have to do an offset compensation in operation of our system Based on experimental results, proposed method showed improved quality of image which suppressed FPN by change of temperature distribution from an observational image in real-time system.

Development of a Solar Powered Water Pump by Using Low Temperature Phase Change Material ­ System Construction and Operation Analysis ­ (저온 상변화 물질 특성을 이용한 태양열 물펌프 실용화 연구개발(II) ­시스템 구성 및 작동분석)

  • 김영복;이양근;이승규;김성태;나우정;민영봉
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • In this study, the energy conversion equipment from the radiation energy to mechanical energy by using n­pentane as the operating fluid was constructed and the performance to pump the water was tested for the utilization of solar powered water pump. The equipment was designed optimally, after the theoretical analyses of the water pumping head and water quantity per cycle were done. The pentane vapour temperature in the condenser and the temperature of the outlet water from the condenser became lowered and the heat transfer rate became higher with decreasing the water inlet level to the condenser. The temperature difference between the condenser and the water tank was significant. Therefore, the distance between the water tank and condenser was recommended to be shorten and the diameter of their connecting pipe was recommended to be narrow in order to reduce the resistance of the fluid passage and improve the heat transfer rate. The amount of water pumped was 1.6­2.4 liters. Mass flow rate of the cooling water became lowered when the cooling water pipe was prolonged from the condenser to improve the heat transfer rate.

  • PDF

Study on microstructure and mechanical properties of friction stir welded 9% Ni steel (마찰교반접합된 9% Ni 강의 미세조직 및 기계적 특성에 관한 연구)

  • Choi, Don-Hyun;Ahn, Byung-Wook;Choi, Jung-Hyun;Lee, Chang-Yong;Yeon, Yun-Mo;Song, Keun;Lee, Jong-Seop;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.49-49
    • /
    • 2009
  • 마찰교반접합법은 특정한 회전수로 회전하는 용접 툴을 이용하여 접합하고자 하는 피접합재의 맞댄면에 삽입시킨 후 툴을 이동시키거나 혹은 시편을 견고하게 고정시킨 장치(backing plate)가 움직여 고상 상태에서 접합이 이루어진다. 알루미늄, 마그네슘 등 비교적 융점이 낮은 저융점 재료의 재료에 처음 적용이 되어 많은 연구가 활발히 진행되었고 타 용접방법에 비해 우수한 접합특성을 나타내었다. 최근 이러한 마찰교반접합은 이러한 저융점 재료를 넘어서 스틸, 타이타늄, 니켈 등과 같은 고융점 재료 등에 대한 적용이 늘어나고 있다. 마찰교반접합을 이용하여 이러한 고융점 재료의 접합 경우 내마모성 및 내열성 등의 내구성이 갖추어진 툴과 이러한 툴을 냉각시킬 수 있는 냉각 장치 등이 필요로 하나 경제적 측면이나 접합부의 우수한 특성 등을 고려 할 때 그 적용 및 발전 가능성이 매우 높다고 볼 수 있다. 최근 무공해 연료로 각광받고 있는 액화천연가스 (LNG)의 수요가 급증함에 따라 LNG 저장탱크 소재로 널리 사용되고 있는 9% Ni강의 수요 또한 증가하고 있는 상황이다. 하지만 9% Ni 강은 극저온용 소재로 용접부의 저온인성 ($-196^{\circ}C$)이 가장 중요하기 때문에 저온인성을 확보하고자 Inconel 계나 Hastelloy계 등의 니켈 기 합금을 용접재료로 사용하고 있으나 이러한 용접재료는 가격이 매우 고가이며 또한 용접 후 용접부의 강도가 낮다는 문제가 제기되고 있다. 또한 LNG 탱크 제작시 사용되는 용접법은 GTAW, SAW 및 SMAW 이지만 국내에서는 주로 SMAW에 의존하고 있는 실정인 관계로 보다 더 경제적인 용접 프로세스의 적용 가능성이 검토되고 있는 상황이다. 본 연구에서는 마찰교반용접을 이용하여 두께 4mm의 9% Ni 강에 대해 맞대기 마찰교반접합을 실시하였다. 툴 회전 속도 및 접합 속도를 고정한 상태에서 접합을 실시 하였으며 접합 시 툴은 $Si_3N_4$로 제작된 툴을 사용하였다. 접합 후 외관상태 점검, 미세조직 관찰, 경도, 인장 강도 및 저은 충격 측정 등의 실험을 실시하였고, 이러한 결과를 이용하여 미세조직과 기계적 특성과의 관련성을 조사하였다.

  • PDF

On the Abnormal Low Temperature Phenomenon of the Yellow Sea Bottom Cold Water in Summer, 1981 (1981年 夏季 黃海底層冷水의 理想底水溫現象)

  • Yang, Sung-Ki;Cho, Kyu-Dae;Hong, Chol-Hoon
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 1984
  • The abnormal low water temperature phenomenon of the Yellow Sea Bottom Cold Water in summer, 1981 is studied on the basis of the oceanographical data collected by the National Fisheries University of Pusan in July, 1981 and Fisheries Research and Development Agency of Korea from 1960 to 1981 and meteorological data within the same 22 years. In winter, 1980 the northwesterly monsoon was vary predominant and the air temperature was lower than that of mean year by 1∼8$^{\circ}C$ and also the surface temperature was lower 1∼3$^{\circ}C$. And then the temperature of the Yellow Sea Bottom Cold Water in summer, 1981 became lower 2∼3$^{\circ}C$ than that of mean year and the influence of this cold water was extended to about 50 miles off the coast of Cheju Island. Comparing with mean year, the water temperature at 30m depth in February, 1981 was lower by 1∼2$^{\circ}C$ in entire regions except near sea of Sohuksando and at 50m depth in August, 1981, it was lower by about 3.5$^{\circ}C$. Particularly, the offshore of Hongdo shower value of 5$^{\circ}C$ than that of mean year. It was found that the abnormal low water temperature phenomenon of Yellow Sea Bottom Cold Water in summer, 1981 resulted from the sea surface cooling by the predominant northwestly monsoon and abnormally low air temperature in winter, 1980.

  • PDF

Temperature-Aware Microprocessor Design for Floating-Point Applications (부동소수점 응용을 위한 저온도 마이크로프로세서 설계)

  • Lee, Byeong-Seok;Kim, Cheol-Hong;Lee, Jeong-A
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.532-542
    • /
    • 2009
  • Dynamic Thermal Management (DTM) technique is generally used for reducing the peak temperature (hotspot) in the microprocessors. Despite the advantages of lower cooling cost and improved stability, the DTM technique inevitably suffers from performance loss. This paper proposes the DualFloating-Point Adders Architecture to minimize the performance loss due to thermal problem when the floating-point applications are executed. During running floating-point applications, only one of two floating-point adders is used selectively in the proposed architecture, leading to reduced peak temperature in the processor. We also propose a new floorplan technique, which creates Space for Heat Transfer Delay in the processor for solving the thermal problem due to heat transfer between adjacent hot units. As a result, the peak temperature drops by $5.3^{\circ}C$ on the average (maximum $10.8^{\circ}C$ for the processor where the DTM is adopted, consequently giving a solution to the thermal problem. Moreover, the processor performance is improved by 41% on the average by reducing the stall time due to the DTM.

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

The Heat Pump Application to the Food Concentration (열 펌프의 식품 농축에의 이용 연구)

  • Park, Noh-Hyun;Kim, Byeong-Sam;Kang, Tong-Sam;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.486-491
    • /
    • 1987
  • The performance and applicability to food concentration of heat pump were investigated. During heating the water of spa from $43^{\circ}C$ to $51^{\circ}C$, COP's of heat pump (R-12, 150 HP) were 4.03 at heating part and 3.5 at cooling part. And, the efficiency of compressor (${\alpha}$) was 0.477 While the city water was heated to $39^{\circ}C$ by heat pump (R-22, 10 HP), its COP's were 3.0 at heating part and 1.87 at cooling part. During concentrations sucrose solution by centrifugal evaporator (ALFA-LAVAL CO, CTIB) with heat pump, heat capacity for condensating water vapor was required greater 15% than the latent heat for concentrating and then the overall heat transfer coefficient was $1196\;Kcal/m^{2}.\;h.\;^{\circ}C$. When low temperature concentration ($30-35^{\circ}C$, 28-40 Torr) of garlic extract was carried out by the water of $60^{\circ}C$ and $15^{\circ}C$ adjusted by heat pump, the ratio of heat capacity for concentrating vs. that for condensating of water vapor was 0.961.

  • PDF