• Title/Summary/Keyword: 저수로 변화

Search Result 515, Processing Time 0.025 seconds

Numerical Estimations of Nakdong River Flows Through Linking of Watershed and River Flow Models (유역 모형과 하천 모형의 연계를 통한 낙동강 본류 흐름 예측)

  • Kang, Hyeong-Sik;Jang, Jae-Ho;Ahn, Jong-Ho;Kim, Ik-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.577-590
    • /
    • 2011
  • In this study, the watershed and water body models were linked for the simulation of the Nakding river flow. This is a pre-step study for the estimation of the effect of the flow and water quality on the climate change. For models of watershed and river flow, the SWAT and EFDC were used, respectively. The runoff discharge at each boundary points for the simulation of the river flow was provided from the drainage basin model. The calculated runoff discharge by the SWAT model was compared with the measured data of the Ministry of Environment at 13 locations along the Nakdong river and 30 locations along the tributary streams. The computed water discharge was shown to be similar with the measured data. For the model calibration and verification, % difference, NSE, and $R^2$ were computed. The computed % difference was within 15% except of a few points. The NSE and $R^2$ were also within a fair level. The Nakdong river flow of 2007 was simulated by using the EFDC model. The comparison with the measured data showed that the model reflected the actual values of low and high flow well. Also, it was confirmed that the acceleration and deceleration in the curved areas were appropriately simulated. The movement of dye injected at the upstream boundary was simulated. The result showed that the arrival time up to the estuary dam was computed to be about 65 days.

Analysis of Emergency Water Supply Effects of Multipurpose Dams Using Water Shortage Index (용수부족지표를 이용한 다목적댐의 비상용수 공급 효과 분석)

  • Lee, Gwang-Man;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1143-1156
    • /
    • 2012
  • One of the important purposes of most water resources systems is to prevent from drought damages. However, there are uncertainties in water supply plans from a reservoir due to factors such as limitation of available data, inaccuracy of surveyed data, unsuitability of analysis method, and climate change. In actual operating process, severe drought exceeding the water supply capability makes the normal water usage difficult. In Korea, however, alternative water source such as a development of new water project is very limited in case of water shortages due to drought. Especially, since there is no standard to evaluate the water supply effect considering severe drought damages, it is difficult to prepare the practical measures. In this study, water shortage events of existing multipurpose reservoirs are analyzed and the method of using low-storage emergency water supply is studied by using Water Shortage Index (WSI). The water shortage events are analyzed and the effect of water shortage decrease is evaluated using the existing inflow data of multi-purpose reservoirs. The results show that Imha, Daechung, Hapchon and Namkang reservoirs are highly vulnerable to the severe drought and required to develop additional emergency water source.

Improving the water yield capabilities using reservoir emergency storage and water supply adjustment standard (합천댐의 비상용량 및 용수공급 조정기준을 활용한 용수공급능력 제고)

  • Ahn, Jaehong;Lee, Youngmok;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1027-1034
    • /
    • 2016
  • One of the most important purpose of multi-purpose reservoir is storing a large amount of water for utilization in a dry season. However, multi-purpose reservoirs that were constructed according to the limited hydrologic information available at the time of construction may encounter problems such as decreased water inflow due to climate change and an inability to cope with a water shortage. To solve these problems, in 2015, the Ministry of Land, Infrastructure and Transport suggested a revised water supply standard in case of water shortage for reservoirs. However, the revised standard has not been sufficiently discussed to determine its effectiveness. In addition, multi-purpose reservoirs in South Korea have secured and stored water for emergencies, but there is currently no way to utilize the stored water. Determining how to utilize the stored water effectively may be a useful method for preparing drought. Therefore, this article discusses the revised water supply standard as it relates to a water shortage in reservoirs and a method of utilizing the water stored for emergencies in multi-purpose reservoirs. The options for utilizing the water storage were evaluated using a water shortage safety degree index, and the results showed that the options may slightly and limitedly increase the water supply capacity. However, the evaluation also showed that a complex application of two options may overcome the exisiting problem and to supply water more effectively.

Effect of Soil Acidity and Nitrogen Fertilization on the Growth and Yield of Barley Cultivars (대맥의 내산성 품종육성을 위한 기초연구 I. 토양산도와 질소시용량이 대맥품종의 생육 및 수량에 미치는 영향)

  • Shim, Jai-Wook;Lee, Hong-Suk;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.12-22
    • /
    • 1988
  • The effects of pH and Aluminum treatment on the seedling growth were examined with 11 cultivar under three levels of pH in nutri-culture.. Growth and yield responses of soil pH and nitrogen fertilization were also studied with five cultivars under 3 levels of soil pH and 3 levels of nitrogen application in the field experiment. The effect of pH on the seedling growth was not significant, but Aluminum treatment significantly decreased the seedling growth in nutri-culture except Dusan #12. Chlorophyll contents of leaves, dry weight of plants, culm length, spike numbers per unit area, grain numbers per spike, grain weight, and yield were decreased as the decrease of soil pH, and thus highly significant correlation between soil pH during barley growth and yield was observed in all cultivars examined. The stable cultivars to different soil pH with high yield was not found although the decreases of yield were different with cultivars. The increase of nitrogen fertilization significantly increased the nitrogen and chlorophyll contents of leaves, and dry weight of plants, while showed a little effects on the culm length, spike number per unit area, grain number per spike, grain weight and yield. The yield was significantly correlated with culm length, dry weight of plants, grain numbers per spike and 1000 grain weight at each pH levels.

  • PDF

Study on Introduction to Predicting Indicator of Cyanobacteria Dominance in Algae Bloom Warning System of Hangang Basin (한강유역 조류경보제에 남조류 우점 예측인자 도입에 관한 연구)

  • Kim, Tae Kyun;Choi, Jae Ho;Lee, Kyung Ju;Kim, Young Bae;Yu, Sung Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.378-385
    • /
    • 2014
  • The chlorophyll-a concentration in algae bloom warning system of Hangang basin did not predict the cyanobacteria dominance. In this study, suggest the predicting indicator of cyanobacteria dominance through analyzing the environmental factors affecting on the cell count of cyanobacteria. Firstly, the dominance of algae was analyzed with seasonal variation during Jan. 2012~Sep. 2013. The diatom dominated phytoplankton communities during the period of January~April. In the May~June, the green algae dominated. And, the dominance of algae was changed to cyanobacteria in the July~August. Also, the environmental factors affecting to cyanobacteria blooms ; nutrients (TN, TP), temperature, precipitation, dam-discharge were evaluated during the study period. Rather than temperature factor, relatively low dam discharge causes cyanobacteria to grow rapidly and create a blooms. The low dam-discharge may increase the water retention time. Finally, it is proved that a low ratio of TN to TP (<29:1) can favour the development of cyanobacteria blooms. Thus, the predicting indicator (TN:TP) have need to apply to the alarm bloom warning system of Hangang basin.

Effect of Highly Water-Absorbing Polymer on Thrfgrass Quality of Creeping Bentgrass, Kentucky Bluegrass, and Zoysiagrass (초흡수성 고분자 중합체가 크리핑 벤트그래스, 켄터키 블루그래스 및 들잔디의 잔디품질에 미치는 효과)

  • Kim, Kyoung-Nam
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.59-68
    • /
    • 2011
  • Research was initiated to investigate the effect of high water-absorbing polymer on turf grass quality of three major turfgrasses. A total of 12 treatment combinations were used in the study. Treatments were made with different rates of sand, soil organic amendment (SOA), and water-swelling polymer (WSP). Visual turf grass quality was evaluated in creeping bentgrass (Agrostis palustris Huds., CB), Kentucky bluegrass (Poa pratensis L., KB), and zoysiagrass (Zoysia japonica Steud., Zoy) grown under greenhouse conditions. Significant differences were observed among the treatments in CB, KB, and Zoy. Visual quality ratings varied with mixing rates of SOA and WSP, being maximum 5.6 in differences among them. At the end of study it ranged from 0.3 to 9.6 in CB, 0.3 to 4.0 in KB, and 0.9 to 5.8 in Zoy. Turfgrass quality pattern changed with time after seeding among treatments influenced by WSP rates. From this study, a proper rate of WSP is considered to be 5%, 5~10%, and 5% for CB, KB and Zoy, respectively. In general, overall treatment effect of WSP on turfgrass quality was highly associated with SOA 20% in three turtgrass species. When mixing sand with SOA and WSP for rootzone soil, a proper rate of SOA is considered to be 15 to 20% for CB and KB, while 20% for Zoy of warm-season grass. A further study would be required to investigate the effect of varied, gradual mixing rates of WSP on growth characteristics of turfgrasses grown on mixtures of sand, SOA, and WSP before a field application.

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

The Evaluation for Maximum Chl. a Site Observed in the Mid to Lower Nakdong River (낙동강 중${\cdot}$하류수역에서 클로로필 a 최대농도 출현지역 평가)

  • Shin, Sung-Kyo;Baek, Kyung-Hoon;Song, Mi-Koung
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.21-27
    • /
    • 2002
  • The frequent occurrence of excessive phytoplankton populations in the downstream Nakdong River has been an important water quality problem in recent years. The limnological survey of the Nakdong River was conducted from January 1997 to December 1999 on once or twice per month. A typical phenomenon of eutrophication appears with the persistent algal bloom due to high nutrients in the mid-lower part of the river. This study showed that the point at which Chl. a concentration reaches maximum was affected by the water temperature and the flow rate. For example, Chl. a concentration reached maximum after around 380, 240 and 120 hours which were estimated from the time of flow at low (${\le}10^{\circ}C$), mean ($10{\sim}20^{\circ}C$) and high (${\ge}20^{\circ}C$) water temperature conditions, respectively. It was estimated that increase coefficients of phytoplankton (Chl. a) on the water temperature are 0.201, 0.254 and $0.289\;day^{-1}$, on the contrary, decrease coefficients are -0.012, -0.128 and $-0.193\;day^{-1}$ in low, mean and high water temperature. Therefore, to prevent formation of Chl. a maximum concentration in the specific water resource, it is necessary to increase the discharge of dam as well as to decrease.

Assessment of Hydraulic Behavior and Water Quality Variation Characteristics in Underground Reservoir (지하저수조의 수리적 거동과 수질변화 특성 평가)

  • Lee, H.D.;Bae, C.H.;Kim, J.H.;Hwang, J.W.;Hong, S.H.
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • The assessment on characteristics of hydraulic behavior and water quality variations of underground reservoirs of buildings were studied. Firstly, it was thought that underground reservoir capacities($m^3$) of buildings should be not determinated by the uniform and same methods but be estimated on the basis of the dwelling areas on dominated households and their residential characteristics, because these characteristics influence significantly on actual water usages and patterns of buildings. Secondly, it was likely that the average reduction rate of residual chlorine in underground reservoirs were affected from the their capacities, because the average reduction rate of residual chlorine in underground reservoirs under $1,000m^3$ was 43 percent, on the other hand, that rate of underground reservoirs over $1,000m^3$ was 60 percent. Thirdly, through the field investigation, the retention time of drinking water in underground reservoirs were in the range from 0.3 day to 3.9 day. In addition to, the average reduction rate of residual chlorine were depended largely on the retention time of drinking water. When the retention time was under 24 hours, the average reduction rate of residual chlorine was 45 percent, and in case of over 24 hours, was 49 percent. Fourth, water level in underground reservoirs was averagely varied in the range from 0.1 m to 2.65 m at the height of underground reservoirs. If considered actual height of underground reservoirs, 37.6 percent of the height of underground reservoirs was only used. Consequently, the frequency of the inflow and outflow of drinking water in underground reservoir were very increased, and had an effect on the reduction of residual chlorine. Lastly, the investigations on hydraulic structure characteristics of underground reservoirs inside showed the locations of inflow and outflow of drinking water almost were in the opposite direction. And some buildings had several baffles in the middle. Nevertheless, their installations had no beneficial for the improvement of water quality.

Mineral nutrition of field-grown rice plant. -III. Uptake, efficiency and percent translocation of N.P.K. and Si at various yield classes (포장재배수도(圃場栽培水稻)의 무기영양(無機營養) -III 수량등급별(收量等級別) 양분(養分)(N. P. K Si) 흡수량(吸收量), 양분효율(養分効率) 및 전이율(轉移率))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 1974
  • Uptake amount, percent translocation to grain and grain yield efficiency of N. P. K. Si were investigated with N. P. K simple trials (countrywide, 1967~69) and other nitrogen fertiltzer field trials in relation to yield class. 1) Uptake rate with yield increase were similar in all nutrients but silica showed greater yearly variation. 2) In N. P. K simple trials showing very low nitrogen efficiency(46kg grain/ nitrogen uptake kg) it and percent translocation increased with yield increase. 3) Nitrogen efficiency deacreased with the increase of nitrogen uptake and the decreasing rate depends greatly on fertilizer forms and variety. Nitrogen efficiency was greater in sandy loam where yield was higher than in clay loam. 4) Nitrogen efficiency positively correlated with percent translocation. 5) In high yielding fields yield was attributed only to the increase of nitrogen uptake, keeping efficiency around 50. 6) Major factor for high yield is considered as the increase of nitrogen efficiency rather than nitrogen uptake. 7) Phosphorus efficiency in N. P. K. simple trials was considerably low, suggesting too much uptake due to soil reduction.

  • PDF