• Title/Summary/Keyword: 재조절

Search Result 1,418, Processing Time 0.027 seconds

Fabrication and characterization of InGaAsP/InP multi-quantum well buried-ridge waveguide laser diodes (Buried-Ridge Waveguide Laser Diode 제작 및 특성평가)

  • 오수환;이지면;김기수;이철욱;고현성;박상기
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.669-673
    • /
    • 2003
  • We fabricated a buried-ridge waveguide laser diode (B-RWG LD) which has more advantages for obtaining lateral single mode operation on the same ridge width and for the planarization of the device surface, compared to the conventional RWG LD. In this LD, the difference of the lateral effective refractive index can be controlled by the thickness of the InGaAsP layer which is grown on the active and the p-InP layers. The InGaAsP multiple quantum well was grown on a n-InP substrate by the CBE. The buried ridge structure was formed by selective wet etchings, followed by liquid phase epitaxy methods. The fabricated LD with the ridge width of 7 ${\mu}{\textrm}{m}$ showed a linear increase of the optical power up to 20 ㎽ without any kinks and a saturated output power of more than 80 ㎽. By measuring the far field pattern, we demonstrate that LDs with the ridge widths of 5 ${\mu}{\textrm}{m}$ and 7 ${\mu}{\textrm}{m}$ were operated in a lateral single mode up to 2.7I$_{th}$ and 2.4I$_{th}$, respectively.ely.

Effect of Aqueous Chlorine Dioxide and Citric Acid on Reduction of Salmonella typhimurium on Sprouting Radish Seeds (이산화염소수 및 구연산처리에 따른 무(Raphanus sativus L.) 새싹과 종자의 미생물 제어 효과)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Bum-Keum;Kim, Jong-Chan;Jeong, Jin-Woong;Jeong, Seong-Weon
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.754-759
    • /
    • 2008
  • The effect of citric acid-aqueous chlorine dioxide ($ClO_2$) treatment of radish seeds artificially contaminated with Salmonella typhimurium was studied. Radish seeds were inoculated by immersion, in more than 106 log CFU/g seed, of a suspension of S. typhimurium, dried, and stored sealed at $4^{\circ}C$ Radish seeds soaked in 200 ppm aqueous ClO2 solution for 10 min showed a bacterial reduction of 1.08 log CFU/g seed, and the lowering of microbial burden noted in seeds soaked in 2% (w/v) citric acid solution for 10 min was 2.89 log CFU/g seed. Next, radish seeds were exposed to 0.5% (v/v) glycerol solution for 10 min either before or after treatment with 200 ppm aqueous ClO2 or 2% (w/v) citric acid for 10 min. Glycerol exposure after citric acid treatment reduced bacteria by 3.46 log CFU/g seed, and glycerol treatment after aqueous $ClO_2$ treatment reduced the microbial burden by 2.14 log CFU/g seed. Both glycerol treatments yielded better elimination of S. typhimurium than did a single treatment with either citric acid or aqueous $ClO_2$. Radish seeds inoculated with S. typhimurium were treated throughout the entire growth period. Although radish seed treatment was effective, treatment by citric acid and aqueous $ClO_2$ after sprouting was not effective to eliminate S. typhimurium.

Recent Research Trends of Cryopreservation Technology Based on Microalgae Chlorophyta (미세조류 동결보존 기술 개발의 최근 연구 동향)

  • Yim, Jun-Ho;Seo, Yong Bae;Kim, Seon Min;Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.960-968
    • /
    • 2021
  • Since microalgae research started on late 18 century, they have been recognized as one of the most important bioresources used in bioindustry. Owing to the large efforts paid to industrial application of this microorganisms, their importance on food/feed and bioactive compounds has been further extending into the environmental research areas including alternative energy resources, mitigation of the carbon emission, and waste-water treatment. However, despite the importance on their industrial application, the fundamental research field related to the long-term preservation of microalgae culture has not received much attention. However, a less labor intensive and cost-efficient preservation technology enabling biologically active and stable microalgae-culture provides a key success factor in the biotechnological application. Therefore, this study investigated various cutting-edge microalgae cryopreservation technologies currently developed so far, mainly targeting Chlorophyta, which occupies the largest taxon in the classification system of microalgae. In addition, for the development of successful cryopreservation technique, the key factors such as temperature control effect and preservative effect during cryopreservation of microalgae culture were investigated. In addition, the problems with current preservation technology that is being used in Korean domestic biological resource banks and the international microalgal resource banks are described. According to our investigation, currently no standard method for long-term preservation of microalgae is available due to their various morphological and physiological characteristics. To overcome such issues, much more efforts on fundamental research area on the identification of specific biomarker used for microalgae taxonomical classification and further systemic approaches based on strain-specific cryopreservation methods needed.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

Preliminary Study on the Phase Transition of White Precipitates Found in the Acid Mine Drainage (산성광산배수에서 발견되는 흰색침전물의 상전이에 대한 예비 연구)

  • Yeo, Jin Woo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • The white aluminum phases in acid mine drainage usually precipitates when mixed with stream waters with relatively high pH. The minerals in white precipitates play important roles in controlling the behavior of heavy metals by adsorbing and coprecipitation. By the phase transition of these minerals in white precipitates, dissolution and readsorption of heavy metals may occur. This study was conducted to obtain preliminary information on the phase transition of the mineral phases in white precipitates. In this study, the mineral phase changes in the white precipitates collected from the stream around Dogye Mining Site over time were investigated with different pH values and temperatures. White precipitates consist mainly of basaluminite, amorphous $Al(OH)_3$ and a small amount of $Al_{13}$-tridecamer. During aging, the incongruent dissolution of the basaluminite occurs first, increasing the content of the amorphous $Al(OH)_3$. After that, pseudoboehmite is finally precipitated following the precursor phase of pseudoboehmite. At $80^{\circ}C$, this series of processes was clearly observed, but at relatively low temperatures, no noticeable changes were observed from the initial condition with coexisting basaluminite and amorphous $Al(OH)_3$. At high pH, the desorption of $SO{_4}^{2-}$ group in basaluminite was initiated to promote phase transition to the pseudoboehmite precursor. Over time, the solution pH decreases due to the dissolution and phase transition of the minerals, and even after the precipitation of pseudoboehmite, only the particle size slightly increased but no clear cystal form was observed.

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Educational Psychology in the Age of the Fourth Industrial Revolution (제4차 산업혁명 시대의 교육심리학)

  • LEE, Sun-young
    • (The)Korea Educational Review
    • /
    • v.23 no.1
    • /
    • pp.231-260
    • /
    • 2017
  • The Fourth Industrial Revolution foreshadows radical changes in our lives. In the era of the fourth industrial revolution called the digital revolution, individualized learning based on ubiquitous learning is emphasized. The contents of learning will be centered on procedural knowledge rather than narrative knowledge, and fusion education in which boundaries between learning domains are broken down will be achieved. First of all, learners in the fourth industrial revolution era should have critical thinking and problem solving abilities. Metacognition based on self-control and cognitive flexibility is important for effective self-directed and active learning. Creativity-based collaborative activities, social vision skills, and social and emotional skills are also important competencies. Therefore, in order to provide individualized learning contents to learners in the fourth industrial revolution era, they should be transformed into learning paradigm based on personal characteristics such as learners' self-efficacy, interest, curiosity and creativity. In addition to this, evaluation forms should be diversified according to changing teaching and learning methods. In order to cultivate teachers to lead such educational innovation, it is necessary to reconsider the teaching capacity. Teachers should be able to construct creative lessons by skillfully exploiting technology in future learning environments. In addition to this, it should also have the ability to collaborate and cognitive flexibility to converge with other academic disciplines. Along with these discussions, we proposed the need for policy intervention along with changes in education.

The Conceptual Formation of 'Gyeokchi' in the Early Joseon Period (조선 전기 '격치' 개념의 의미화)

  • Lee, Haeng-hoon
    • The Journal of Korean Philosophical History
    • /
    • no.58
    • /
    • pp.139-160
    • /
    • 2018
  • 'Gyeokmulchiji' (格物致知), coming to knowledge based on the investigation of things) is a starting point for any study and politics of Confucianism. Much emphasis was placed on the conception of 'Gyeokchi' as a root of every learning and adminstration in the early Joseon period. As Confucianism established itself as a salient value system of the government, a mighty change and paradigm shift happened in its governmental system which had depended upon Buddhism up to that time. Thus, Confucian statecraft also stood out. Daehakyeonui (大學衍義) was preached as a model of regal learning and politics in the governmental agon, and its conceptual starting point was 'Gyeokchi.' The various interpretations and arguments about this concept shows the process in which Zhu Xi NeoConfucianism was deepened into Neo-Confucianism of Joseon's own. This conception reached the essence of 'Li' beyond the problem of cognitive subject and object, and provided a watershed which divided Giho (畿湖) and Yeongnam (嶺南) schools. Confucian method of study, which incorporates knowledge and practice, has great implications for our times when there are many voices of concern over humanities. The enhancement of universities and humanities is much needed to adjust the direction and pace of scientific technology, which is now entirely left with the logic of market. Accordingly, it is quite urgent for us to examine our object of learning again, which should integrate 'Sugi' (修己, cultivating oneself) with 'Chi-in' (治人, governing others), and knowledge with practice.

Anti-inflammatory Activities of Cold Brew Coffee Using Dry Fermentation of Lactobacillus plantarum (건식발효를 이용한 유산균 더치 커피의 항염증 효과)

  • Go, Seok Hyeon;Monmai, Chaiwat;Jang, A Yeong;Lee, Hyungjae;Park, Woo Jung
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.337-343
    • /
    • 2018
  • Coffee is a commonly consumed beverage that contains anti-inflammatory compounds such as caffeine, chlorogenic acid, cafestol, trigonelline, and kahweol. Lactobacillus plantarum is a lactic acid bacterium most frequently used in the fermentation of food products of plant origin. L. plantarum is able to degrade some food phenolic compounds and provide high value-added compounds such as powerful antioxidants or food additives approved as flavouring agents. In this study, we investigated the anti-inflammatory effects of coffee extract fermented by L. plantarum on RAW264.7 macrophages. In lipopolysaccharide-stimulated RAW264.7 cells, these coffee extracts exhibited anti-inflammatory activities through the reduction of nitric oxide (NO) production and inducible NO synthase expression. Fermented coffee extracts significantly decreased the expression of inflammatory cytokines such as tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$, interleukin 6, and interferon ${\gamma}$. Cyclooxygenase-2, which is one of the key biomarkers for inflammation, was significantly suppressed. These results might be helpful for understanding the anti-inflammatory mechanism of fermented coffee extract on immune cells and, moreover, suggest that fermented coffee extract may be a beneficial anti-inflammatory agent.

Application of Casein Phosphopeptide/Chitosan Oligosaccharide Nanocomplex to Dairy Foods (케이신 포스포펩티드/키토올리고당 나노 복합체의 유식품 적용 연구)

  • Ha, Ho-Kyung;Baek, Yun-Seo;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • The aim of this research was to investigate the potential application of casein phospho-peptide (CPP)/chitosan oligosaccharide (CSO) nanocomplexes to dairy foods. The physical stability of CPP/CSO nanocomplexes during storage in model dairy foods including milk and yogurt was assessed by measuring the size and polydispersity index of the nanocomplexes. Encapsulation efficiency and in vitro vitamin D release from CPP/CSO nanocomplexes during gastrointestinal digestion were determined using HPLC. CPP/CSO nanocomplexes with increased CPP concentrations and decreased pH displayed significantly increased average particle size. During storage in model dairy foods, CPP/CSO nanocomplexes prepared with lower CPP concentrations and raised pH exhibited excellent physical stability. Vitamin D encapsulation efficiency increased significantly (p<0.05) as CPP concentration and/or pH decreased. Less than 3% vitamin D were released under gastric digestion conditions in vitro, while 91% of encapsulated vitamin D was released by 2 h of incubation under intestinal conditions, indicating that CPP/CSO nanocomplexes could effectively protect vitamin D from gastric conditions for delivery to the intestines. In conclusion, CPP/CSO nanocomplexes can be applied to dairy foods as an effective vitamin D delivery system.