• Title/Summary/Keyword: 재생 펌프

Search Result 216, Processing Time 0.022 seconds

Experimental and Numerical Study on the Performance Characteristics of an Open Channel Type Regenerative Pump (개수로형 재생펌프의 성능특성에 관한 실험적 및 수치해석적 연구)

  • Shin, Dong-Yun;Choi, Chang-Ho;Hong, Soon-Sam;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.7-14
    • /
    • 2008
  • Open channel type regenerative pump has been used in various industrial fields. It generates high pressure with low flow rate. However, it has low efficiency because of its complex flow pattern, We studied performance experiments and 3D numerical flow analysis of a regenerative pump. Through the numerical analysis, we could get the internal flow pattern and profile of a regenerative pump. Also, we examined leakage flow effects due to the gap between casing and impeller and stripper clearance. For the numerical analysis verification, we performed experiments and they had similar tendency at the design point.

A Case Study on the Effective Thermal Conductivity Measurement in In-situ Thermal Response Test (현장열응답시험을 이용한 지중열전도도 측정 사례연구)

  • Kim, Min-Jun;Choi, Choong-Hyun;Woo, Jeong-Tae;Chang, Keun-Sun;Kang, Hee-Jeong;Seo, Jeong-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.123.2-123.2
    • /
    • 2010
  • 본 논문에서는 2008년 4월 이후 지열원 열펌프가 설치되어지는 현장에 시험공의 지중열전도도를 현장열응답법을 이용하여 측정하였으며, 그간에 측정된 지중열전도도를 이용하여 전국의 지중온도 및 지중열전도도의 산포도를 정리하였다. 지중열교환기의 심도가 150m일 때 지중온도 분포는 약 $12.0{\sim}19^{\circ}C$의 넓은 분포를 보였으나 대부분의 지중온도가 $15.0{\sim}17.0^{\circ}C$의 범위에 분포하였으며, 지중열전도도의 경우도 마찬가지로 1.50 ~ 9.00 W/mk 값으로 아주 넓은 분포를 보였으나 2.30 ~ 2.90W/mk 값이 가장 많이 나타냈다.

  • PDF

Through Flow Analysis and Leakage Flow of a Regenerative Pump (재생펌프의 유동해석 및 누설유동에 관한 연구)

  • Sim, Chang-Yeul;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1015-1022
    • /
    • 2003
  • Flows in a regenerative pump were calculated for several flow-rates, using the CFX-Tascflow. The calculated results show the vortex structure in the impeller and side channel. The predicted performance shows considerable discrepancy from the measured values for low flow rates. Main source of the difference is the leakage flow of pump strongly affecting the performance of pump. A simple correlation was proposed using calculated leakage flows through the simplified passage. One dimensional analysis were made for the recirculating flow and angular momentum transfer using calculated three dimensional data base.

Performance Characteristic Analysis for Open Channel Type Regenerative Pump (개수로형 재생펌프의 특성해석에 관한 연구)

  • Shin, Dong-Yun;Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.46-53
    • /
    • 2007
  • An improved performance characteristics analysis model of a regenerative pump is proposed in the present paper. For its low characteristic speed, a regenerative pump generates high head with low flow rate. However, the efficiency is fairly low due to the skin friction between impeller and casing. Also, the complexity of its internal flow pattern makes prediction of performance characteristics difficult. In the present research, a one-dimensional analysis model was improved with consideration of disc friction loss, minor loss, and modified flow length, and the result was proven to be close in range with the results from experiments.

Study on the performance analysis and the optimization of regenerative pump (재생펌프의 성능해석 및 최적화에 관한 연구)

  • Lee, Chan;Sung, Hyung-Jin;Kwon, Jang-Hyuk;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.661-667
    • /
    • 1991
  • A performance of a regenerative pump has been analyzed using various pressure loss correlations. The predicted head and efficiency agree favorably with experimental data, which confirms the validity of the present analysis. In addition, performance improvement is made through the optimization of the open channel geometry configuration and the capacity of the regenerative pump. The optimized pump has better efficiency, higher head and larger flow coefficient. Moreover, its operation range is wider than that of the conventional unit.

Electric Water pump Development (전동식 워터펌프 개발)

  • Jung, Se-Young;Kwak, Joong-Hee;Park, Bum-Yong;Jung, Woo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.576-579
    • /
    • 2008
  • The purpose of study is a development of the high reliance electric driven water-pump that fuction is forcing the movement of water using basic design, proto sample and test at the cooling system. It was important to supply a coolant quickly and accurately for the requirement of flow rate at the system when we carried out the designs for BLDC Moter, Controller and water pump(Impeller, Volute Casing, Sealing Device) First, we attained ours purpose that the target efficiency for water pump was over 40% and then we are doing the optimum design for Brushless Motor and Controller that its target is over 55% of efficiency.

  • PDF

Optimization of Heat Pump Systems (열펌프의 성능 최적화에 관한 연구)

  • Choi, Jong-Min;Yun, Rin;Kim, Yong-Chan
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump and the variation of compressor speed are investigated at various operating conditions. Mass flow rate through capillary tube, short tube orifice, and EEV was strongly dependent on the upstream pressure and subcooling. The heat pump system is very sensitive with a variation of refrigerant charge amount. The performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

A Case Study on the Installation and Operation of the Standing Column Well Method (우물관정형(SCW공법) 지열히트펌프 시스템의 설치 및 운영사례)

  • Na, Sang-Min;Park, Si-Sam;Park, Jong-Hun;Rhee, Keon-Joong;Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.592-595
    • /
    • 2009
  • In recent years, geothermal heat pump (GHP) systems have become increasingly popular for heating and cooling in buildings. The Standing Column Well (SCW) method is one of the most efficient GHP system. Because it use groundwater for heat transfer material. In SCW systems, water is re-circulated between the well and the building (heat pump). It is only a short time since this method has been applied in domestic. So we have to refer to the developed countries' guides and manuals of SCW. In this paper, several design and construction points of SCW method are filed. We used real operation data of SCW system at Chong-Ju Univ. site for economical efficiency analysis. As a result, the payback period of Chong-Ju Univ. site is calculated at 7.23 years.

  • PDF

Development of High Peformance Geothermal heatexchanger (고성능저가형 지중열교환기 개발연구)

  • An, Hyung-Jun;Baek, Sung-Kwon;Im, Sung-Kyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.470-473
    • /
    • 2007
  • Geothermal heat exchanger(GHEX) is a major component of Geothermal heat pump system(GSHPs). In Common, We use the vertical type GHEX in Korea. But vertical type GHEX needs a high cost for installation, because of drilling the hole which has 200m depth at max. So, We suggest the use of horizontal type GHEX. When we construct buildins, We excavate the ground and we can install the horizontal type GHEX at the excavated underground. It's very cheap and convenient method compare to vertical type GHEX installation. This study is peformed to estimate the peformance of horizontal type GHEX and to analyze effects of heat exchanger types and undergroundwater. As the result, slinky type GHEX has a 66% efficiency compare to vertical type GHEX and mat type has a 201% efficiency at the undergroundwater zone.

  • PDF

3 Dimensional Numerical Simulation for the Closed Loop Heat Pump System Using TOUGH2 (TOUGH2를 이용한 폐쇄형 지열펌프 시스템의 3차원 모델링 연구)

  • Kim, Seong-Kyun;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.36-39
    • /
    • 2006
  • To evaluate the effect of groundwater flow on the outlet temperature of a geothermal heat pump, 3 dimensional numerical simulations are performed considering both groundwater flow and pipe flow in the U-tube using TOUGHS, The present study involved the following 4 simulation cases (1) no groundwater flow, (2) slow groundwater flow (hydraulic conductivity: $1.0{\times}10^{-9}m/s)$, (3) fast groundwater flow (hydraulic conductivity, $1.0{\times}10^{-7}m/s$), and (4) groundwater flow varying with the depth (hydraulic conductivity: $1.0{\times}10^{-7}-1.0{\times}10^{-10}m/s$). The effect of groundwater flow on the outlet temperature is significant where hydraulic conductivity of aquifer is $1.0{\times}10^{-7}m/s$. Where hydraulic conductivity of aquifer is $1.0{\times}10^{-10}m/s$, however, that effect is negligible.

  • PDF