• Title/Summary/Keyword: 장용준

Search Result 113, Processing Time 0.022 seconds

Parametric Study on the Aerodynamic Drag of Ultra High-speed Train in Evacuated Tube - Part 2 (진공튜브 내 초고속열차의 공기저항 파라메타 연구 - 2)

  • Kwon, Hyeok-Bin;Nam, Seong-Won;Kim, Dong-Hyeon;Jang, Yong-Jun;Kang, Bu-Byoung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • The aerodynamic drag of ultra high-speed train in evacuated tube have been calculated using computational fluid dynamics and the variation of aerodynamic drag for the change of major system parameter of tube-vehicle system such as the train speed, air density, and the tunnel diameter. The aerodynamic drag in the tube increases with increasing train speed, however, the ratio of drag increase in tube is larger than that on the open field, the V square rule. The aerodynamic drag decreases with increasing tunnel diameter and increasing air density, and the drag increasing for air density is almost linear just like that on open field. For some combination of the parameters, the trend of aerodynamic drag of train showed irregularity.

The Applicability Analysis of FDS code for Fire-Driven Flow Simulation in Railway Tunnel (철도터널 화재 유동에 사용되는 FDS code의 적용성 분석)

  • Jang, Yong-Jun;Park, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.224-230
    • /
    • 2007
  • The performance and applicability of FDS code is analyzed for flow simulation in railway tunnel. FDS has been built in NIST(USA) for simulation of fire-driven flow. RANS and DNS's results are compared with FDS's. AJL non-linear ${\kappa}-{\epsilon}$[7,8] model is employed to calculate the turbulent flow for RANS. DNS data by Moser et al.[9] are used to prove the FDS's applicability in the near wall region. Parallel plate is used for simplified model of railway tunnel. Geometrical variables are non-dimensionalized by the height (H) of parallel plate. The length of streamwise direction is 50H and the length of spanwise direction is 5H. Selected Re numbers are 10,667 for turbulent flow and 133 for laminar low. The characteristics of turbulent boundary layer are introduced. AJL model's predictions of turbulent boundary layer are well agreed with DNS data. However, the near wall turbulent boundary layer is not well resolved by FDS code. Slip conditions are imposed on the wall but wall functions based on log-law are not employed by FDS. The heavily dense grid distribution in the near wall region is necessary to get correct flow behavior in this region for FDS.

Effect of Railway Noise Barrier Shape on Solar Radiation Energy Absorption (철도 방음벽의 형상에 따른 태양복사 에너지 흡수 특성 연구)

  • Jeong, Chan Ho;Lee, Jin Woon;Jang, Yong-Jun;Kim, Jooheon;Ryou, Hong Sun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.209-214
    • /
    • 2013
  • The present study aims to determine the optimized shape for the maximum electric energy production of building integrated photovoltaic system (BIPV) noise barrier through numerical analysis. The shape of BIPV noise barrier is one of the important factors in determining angle difference between direction vector of the sun and normal vector of the sound barrier surface. This study simulated numerically the flow and thermal fields for different angles in the range from $90^{\circ}$ to $180^{\circ}$, and from the results, the amount of isolation onto noise barrier surface was estimated along the angle between ground and top side of noise barrier. The commercial CFD code (Fluent V. 13.0) was used for calculation. It was found that the maximum amount of insolation per unit area was 19.6 MJ for $105^{\circ}$ case during a day in summer and was estimated 12.4 MJ in $150^{\circ}$ case during a day in winter. The results of the summer and winter cases showed the different tendency and this result would be useful in determining the appropriate shape of noise barrier which can be mounted under various circumstances.

THE COMPARISON ON THE CHARACTERISTIC OF THE FIRE DRIVEN SMOKE-FLOW FOR THE PLATFORM TYPES IN THE DEEPLY UNDERGROUND SUBWAY STATION (대심도 지하철 승강장의 종류별 연기전파특성 비교고찰)

  • Kim, H.B.;Jang, Y.J.;Lee, D.H.;Jung, W.S.;Whang, H.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.505-507
    • /
    • 2010
  • In this paper, the comparison on the fire driven smoke flow for platform types was conducted in the Deeply Underground Subway Station. Soongsil-University station (47m depth) as a bank type platform and Mandeok Station as a island type platform were selected for fire numerical simulation. The characteristics of fire driven smoke-flows were analyzed from the simulation results. The proper plan of evacuation against fire for each type was considered through the results.

  • PDF

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

Comparative Study on The Numerical Simulation for The Back-Layer of The Tunnel Fire-Driven Flow with LES and RANS (터널화재유동의 역기류 해석을 위한 LES 및 RANS 결과의 비교 고찰)

  • Jang, Yong-Jun;Kim, Hag-Beom;Kim, Jin-Ho;Han, Seok-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.156-163
    • /
    • 2009
  • In this study, comparative analysis on the back-layer phenomena in the tunnel-fire driven flow is performed using numerical simulation with LES and RANS. FDS(Fire Dynamics Simulator) code is employed to calculate the fire-driven turbulent flow for LES and Smartfire code is used for RANS. Hwang and Wargo's data of scaling tunnel fire experiment are employed to compare with the present numerical simulation. The modeled tunnel is 5.4m(L) ${\times}$ 0.4m(W) ${\times}$ 0.3m(H). Heat Release Rate (HRR) of fire is 3.3kW and ventilation-velocity is 0.33m/s in the main stream. The various grid-distributions are systematically tested with FDS code to analyze the effects of grid size. The LES method with FDS provides an improved back-layer flow behavior in comparison with the RANS (${\kappa}-{\epsilon}$) method by Smartfire. The FDS solvers, however, overpredict the velocity in the center region of flow which is caused by the defects in the tunnel-entrance turbulence strength and in the near-wall turbulent flow in FDS code.

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

< VR Simulation for TV Production Using Digital Storytelling > (< 디지털 스토리텔링 기법을 활용한 TV 영상 제작 시뮬레이션에 관한 연구 >)

  • Kim, Mi-Yun;Choi, Jin-Won;Jang, Yong-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02b
    • /
    • pp.518-523
    • /
    • 2006
  • As digital broadcasting process and information compressing technologies developed, digital technologies have been used extensively in many visual media such as movies and TV programs, and it is required to develop a new process for 3 dimensional digital programs. The study attempts to develop a new digital video-producing process through pre-simulation using a digital storytelling method, in order to increase the quality of broadcasting, reducing the producing time and improve efficiency. This system, supposed to be used to produce actual broadcasting, includes all tools needed for broadcasting in the program, so users can select an appropriate set among the pre-made library, which saves time for making sets. Also, it offers a storyboard making function by perfectly representing the functions of a virtual camera, and enables users to make the better storyboard, checking the real time movies. In addition, it recognizes objects though avatars, organizes the appropriate set for these avatars to act, and embodies a variety of avatar movements through which it reaffirms the camera's position and organization, minimizing errors and saving time and budget.

  • PDF

Complexity Reduction for Local Stereo Matching Method Using Modified SAD algorithm (SAD 정합 알고리즘 수정을 통한 지역기반 스테레오정합의 복잡도 감소 기법)

  • Chang, Yong-Jun;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.218-221
    • /
    • 2014
  • 기존의 지역기반 스테레오 정합 방법은 정합에 사용하는 정합창 크기에 따라 다양한 결과를 갖게 된다. 특히 사용하는 정합창의 크기가 커질수록 영상의 잡음에 강인하지만 객체의 경계부분이 모호해지는 단점을 갖고 있다. 본 논문은 고정된 크기의 정합창을 사용하는 지역기반 스테레오 정합 방법과 다른 방법을 제안한다. 제안한 방법은 영상의 경계를 검출하는 알고리즘을 이용하여 경계부분에는 작은 크기의 정합창을 사용한 변이값을 적용하고 경계가 없는 부분은 큰 크기의 정합창을 사용하여 얻은 변이값을 적용하도록 하였다. 경계를 검출하는 과정에서 본 논문은 AND 연산을 사용하여 최대한 객체의 테두리만을 나타내는 경계값을 구하도록 하였다. 또한 두 가지 크기의 정합창을 이용함으로써 발생하는 복잡도 증가를 감소시키기 위해 기존의 SAD 연산 알고리즘을 수정하여 복잡도를 감소시켰다. 본 논문에서 사용한 정합창의 크기는 $5{\times}5$$15{\times}15$이며 실험결과 제안한 방법은 $15{\times}15$ 정합창을 사용한 결과와 비교하여 변이지도에서 객체의 경계부분은 더 잘 살리면서 수행시간을 줄여 효율적인 정합결과를 얻어냈다.

  • PDF