Point-of-Interest(POI) recommendation systems suggest the most interesting POIs to users considering the current location and time. With the rapid development of smartphones, internet-of-things, and location-based social networks, it has become feasible to accumulate huge amounts of user POI visits. Therefore, instant recommendation of interesting POIs at a given time is being widely recognized as important. To increase the performance of POI recommendation systems, several studies extracting users' POI sequential preference from POI check-in data, which is intended for implicit feedback, have been suggested. However, when constructing a model utilizing sequential preference, the model encounters possibility of data distortion because of a low number of observed check-ins which is attributed to intensified data sparsity. This paper suggests refinement of temporal intervals based on data confidence. When building a POI recommendation system using temporal intervals to model the POI sequential preference of users, our methodology reduces potential data distortion in the dataset and thus increases the performance of the recommendation system. We verify our model's effectiveness through the evaluation with the Foursquare and Gowalla dataset.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.8
/
pp.1407-1414
/
2016
In this study, we develop that Location Recommending System using personal emotion information based on Collaborative Filtering. Previous Location Recommending System recommended a place visited by the user of the rating or the pattern of location for the user place. These systems are not high user satisfaction because that dose not consider the user status or have not objectively the information. Using user's personal emotion information to recommend a high-affinity users who have visited the place felt similar emotions objectively can improve user satisfaction with the place. In this study, a user using a mobile application directly register the recognized emotion information using the current position and bio-signal, and using the registered information measuring the similarity of user with a similarity emotion, predicts a preference for the place it is recommended to emotional place. The system consists of a user interface, a database, a recommendation module.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.535-538
/
2009
모바일 단말기 사용자 수의 증가와 위치기반 서비스 기술의 발달로 위치 정보를 활용한 다양한 위치 정보 서비스가 등장하고 있다. 친구들과 약속을 정하는 일은 빈번하게 일어난다. 약속을 정하기 위해서는 모든 친구에게 연락을 해야 하고 각자 선호하는 장소가 다르기 때문에 모든 친구들이 만족할 만한 최적의 장소를 찾기가 어렵다. 본 논문에서는 모바일 환경에서 친구의 위치를 파악하고 사용자와 친구의 성향을 파악하기 위해 협업 필터링과 인구통계학적 정보를 사용하였고, 약속 장소를 선정하기 위해 사용자와 친구의 위치를 기반으로 후보 영역을 선택하여 약속 장소와 시간을 추천하는 서비스를 제공함으로써 약속을 맺기 위한 절차를 간소화 할 뿐 아니라 사용자와 친구의 성향에 맞는 약속 장소를 추천하여 사용자와 친구가 만족 할 수 있는 약속을 형성할 수 있도록 하는 약속 장소, 시간 추천 서비스 시스템을 설계하였다.
For a place-recommendation model based on user's behavior and multi-attribute attitude in this thesis. We focus groups that show similar patterns of visiting restaurants and then compare one and the other. We make use of The Fishbein Equation, Pearson's Correlation Coefficient to calculate multi-attribute attitude scores. Furthermore, We also make use of Preference Prediction Algorithm and Distance based method named "Euclidean Distance" to provide accurate results. We can demonstrate how excellent this system is through several experiments carried out with actual data.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.753-756
/
2014
기존의 웹 지도 서비스는 방문 횟수가 많은 장소를 알기 어렵고, 사용자에게 여행 경로를 추천하는 기능 또한 찾기 어려웠다. 따라서 본 논문에서는 사진 촬영 분포를 기반으로 한 여행 경로 추천 시스템을 제안한다. 사진이 많이 촬영된 곳이 여행객이 많이 방문한 곳이며, 유명한 장소일 것이라고 가정하여 사진 촬영 분포를 기반으로 여행 경로를 추천하고자 한다. 여행 경로를 추천하기 위해 사진 데이터의 위치 값을 수집하고, 사진 데이터의 위치 값을 기반으로 사진 촬영 분포를 시각화하여 지도 위에 나타낸다. 또한, 여행 지역 내 사진이 많이 촬영된 장소를 유명한 장소로 선정하여 이를 경유하는 여행 경로를 추천한다. 사용자는 시스템을 통해 유명한 장소를 쉽게 인식할 수 있고, 편리하게 여행 경로를 계획할 수 있다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.306-307
/
2023
본 연구는 협업 기반 필터링을 이용하여 반려동물 동반 가능 장소를 추천해주는 시스템을 제안한다. 반려동물 양육 인구가 늘고 있는 현재에 반해 반려동물을 대상으로 하는 추천 시스템은 발전이 더딘 상황이다. 반려동물은 다양한 크기와 종류를 갖고 있기 때문에 기존의 인간 기준의 추천 시스템과는 다르게 접근해야 할 필요성이 있다. 본 연구에서는 반려동물의 다양한 특성을 고려한 장소를 추천해주기 위해 협업 기반 필터링을 활용하였다. 사용자 데이터의 수가 늘어나면 결과의 정확도를 높여주지만, 사용자 간의 유사도를 구하는 비용이 증가한다. 이러한 장단점을 고려하여 '아이템 기반 협업 필터링' 과 '사용자 기반 협업 필터링' 방법을 적절히 사용하는 방향을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.554-557
/
2016
2015년 우리나라 스마트폰 보급률이 83%에 다다르고 인터넷 정보 검색은 PC보다 모바일이 추월한지 오래다. 범람하는 정보 안에서 편하고 빠른 것에 익숙해진 사용자들은 이제 개인화된 맞춤형 추천 정보의 제공을 원한다. 맞춤형 추천을 위해서는 사용자의 행동을 이해하고 추천하는 것이 필요하다. 현재 대중화된 개인 추천 서비스는 책과 영화가 있는데 생활에 많은 부분을 차지하고 있는 음식점 방문에 대해서도 맞춤형 추천 서비스를 제공해 줄 수 있다. 본 논문에서는 음식점 방문에 대한 비슷한 태도를 보인 사용자를 추출한 후 방문했던 장소를 비교하여 추천하는 사용자 행동 기반 다속성 태도 모델 기반의 장소 추천 모델을 연구한다. 다속성 태도점수를 산출하기 위해 피쉬바인(Fishbein) 방정식을 활용하고 피어슨 상관계수를 이용하여 사용자들간의 유사한 장소를 추출했다. 그리고 그룹렌즈의 선호도 예측 알고리즘을 활용하여 추천 대상 장소를 선정하고 유클라디안 거리법으로 사용자의 거리기반 장소를 추천하였다. 또한 본 논문에서는 실제 데이터를 이용한 실험을 통해 본 논문에서 제시한 시스템의 우수성도 입증하였다.
In LBSNS(Location-based Social Network Service), users can share locations and communicate with others by using check-in data. The check-in data consists of POI name, category, coordinate and address of locations, nickname of users, evaluating grade of locations, related article/photo/video, and etc. If you analyze the check-in data from the location-based social network service in accordance with your situation, you can provide various customized services. Therefore, In this paper, we develop a location recommendation system based on LBSNS that can utilize the check-in data efficiently. This system analyzes the location category of the check-in data, determines the weighted value of it, and finds out the similarity between users by using the Pearson correlation coefficient. Also, it obtains the preference score of recommended locations by using the collaborated filtering algorithm and then, finds out the distance score by applying the Euclidean's algorithm to the recommended locations and the current users' locations. Finally, it recommends appropriate locations by applying the weighted value to the preference score and the distance score. In addition, this paper approved excellence of the proposed system throughout the experiment using real data.
The need for personalized recommendation is growing due to convenient access and various types of items due to the development of information communication and smartphones. Weather and weather conditions have a great influence on the decision-making of users' places and activities. This weather information can increase users' satisfaction with recommendations. In this paper, we propose a collaborative filtering-based place recommendation system using living index by utilizing living index of users' location information on mobile platform to find users with similar propensity and to recommend places by predicting preferences for places. The proposed system consists of a weather module for analyzing and classifying users' weather, a recommendation module using collaborative filtering for place recommendations, and a management module for user preferences and post-management. Experiments have shown that the proposed system is valid in terms of the convergence of collaborative filtering algorithms and living indices and reflecting individual propensity.
In this paper, we propose a user-dependent mid-point navigation system using a time weighted mid-point navigation algorithm and a user preference based mid-point neighborhood recommendation system. The proposed system consists of a mid-point navigation module for calculating an mid-point by applying a time weight of each user based on a departure point between users, and a search module for providing a search for a route to the calculated mid-point. In addition, based on the mid-point search result, it is possible to increase the utilization rate of users by including a place recommending function based on user's preference. Experimental results show that the proposed system can increase the efficiency of using by the user-dependent mid-point navigation and place recommendation function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.