• Title/Summary/Keyword: 장대도로터널

Search Result 65, Processing Time 0.019 seconds

The study on application of automatic monitor system for initial fire suppression in double-deck tunnel (대심도 복층터널 초기화재 진압을 위한 자동모니터 소화설비의 적용성 연구)

  • Yoo, Yong-Ho;Park, Sang-Heon;Han, Sang-Ju;Park, Jin-Ouk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.419-429
    • /
    • 2016
  • In a bid to avoid the economic loss resulting from traffic jam in urban area, a deep underground road at 40 m depth has been considered and the first class disaster prevention facilities shall be applied according to domestic guideline. Automatic-monitoring fire extinguishing system designed to use for fire fighting has been widely applied at home and abroad. Recently development and commercialization through theoretical and experimental research to apply to road/railroad sector have been underway. Based on such performance of automatic fire extinguishing system, technical/economic analysis of existing water spray systems was conducted and as a result, it has demonstrated the superiority in terms of fire suppression as well as in cost efficiency. Then to commercialize this system, more diverse studies that will incorporate the characteristics of domestic tunnels are needed and should the system be promoted through institutional improvement, it's expected to become one of the advanced nations with own original technology in a life safety system industry throughout the world.

Amber Information Design for Supporting Safe-Driving Under Local Road in Small-scale Area (국지지역에서의 안전운전 지원을 위한 경보정보 설계)

  • Moon, Hak-Yong;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.38-48
    • /
    • 2010
  • Adverse weather (e.g. strong winds, snow and ice) will probably appear as a more serious and frequent threat to road traffic than in clear climate. Another consequence of climate change with a natural disastrous on road traffic is respond to traffic accident more the large and high-rise bridge zone, tunnel zone, inclined plane zone and de-icing zone than any other zone, which in turn calls for continuous adaption of monitoring procedures. Accident mitigating measures against this accident category may consist of intense winter maintenance, the use of road weather information systems for data collection and early warnings, road surveillance and traffic control. While hazard from reduced road friction due to snow and ice may be eliminated by snow removal and de-icing measures, the effect of strong winds on road traffic are not easily avoided. The purpose of the study described here, was to design of amber information the relationship between traffic safety, weather, user information on road weather and driving conditions in local-scale Geographic. The most applications are the optimization of the amber information definition, improvements to road surveillance, road weather monitoring and improved accuracy of user information delivery. Also, statistics on wind gust, surface condition, vehicle category and other relevant parameters for wind induced accidents provide basis for traffic control, early warning policies and driver education for improved road safety at bad weather-exposed locations.

An experimental study on the smoke-spread region before reaching the critical velocity for the case of fires in tunnels employing longitudinal ventilation system (종류식 환기 시스템에서 임계속도 도달 전 스모크 확산 영역에 관한 실험적 연구)

  • Ki, Young-Min;Yoon, Sung-Wook;Yoon, Chan-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.526-535
    • /
    • 2006
  • An experimental study was carried out on a reduced scale tunnel model to grasp the behavioral feature of fire-induced smoke in the long tunnels. Based on Froude modeling, the 1/50 scaled tunnel model (20 m long) was constructed by acrylic tubes and paraffin gas was released inside the tunnel to simulate the 20 MW fire-induced smoke. me test results show, that after approximately 2 minutes of fire generation, was descended from the tunnel ceiling through the decrease of buoyancy, then it was symmetrically propagated about 90 meters for 4 minutes before jet fans were operated. The smoke was effectively controlled when the jet fans were operated and an air stream velocity was getting closed to reach a critical velocity (the minimum air velocity that requires to suppress the smoke spreading against the longitudinal ventilation flow during the tunnel fire situations). It was also found out that a range of smoke was spreaded about 3 meters from the origin of fire but the range was not propagated to the escape direction anymore. The early stage of the In operation, however, showed that the smoke was hardly controlled. It means that the operation of emergency ventilation system has many dangerous factors such as an intercepting breathing zone.

Application of Linear Schedule Chart by Linking Location Information of Construction Project with Horizontal Work Space (수평작업공간을 갖는 건설프로젝트의 위치정보 연동에 의한 선형공정표 적용방안)

  • Han, Seon Ju;Kim, Hyeon Seung;Park, Sang Mi;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.601-610
    • /
    • 2018
  • Since the building construction works are repeated vertically in a limited space, there is not a great need for the location information of each activity in the schedule management. On the other hand, civil engineering works such as road and railway projects consist of a large number of earthworks, long bridges, and long tunnels. These types of work should be controlled in a horizontal space according to the linear axis of several tens of kilometers. In other words, since most of the activities are managed in the unit of distance from the start point to the end point, it is possible to improve the efficiency of the schedule management by linking the location information of the activity with the schedule data in the schedule management system. This study presents a methodology for creating a linear schedule chart specific to a project with horizontal work space and compares the convenience with the existing Gantt chart. In addition, the methodology of linking linear schedule chart to the 4D CAD system, which is a typical BIM technology in the construction phase, is presented to improve the usability of BIM. The practical applicability of the proposed methodology was verified statistically.

An Overview on the Physicochemical Properties and Photocatalytic Pollutant Removal Performances of TiO2-incorporated Cementitious Composites (TiO2 혼입 시멘트 복합체의 물리·화학적 특성 및 광촉매 반응을 이용한 오염물 제거 성능에 대한 개요)

  • Seo, J.H.;Yoon, H.N.;Kim, S.H.;Bae, S.J.;Jang, D.I.;Kil, T.G.;Park, S.M.;Lee, H.K.
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • Recently, the use of TiO2 as a phtocatalyst has been diversely investigated due to its excellent durability performance and high photocatalytic reaction efficiency. Active researches have particularly focused on the development of TiO2-incorporated cementitious composites in order to remove the atmospheric pollutants. Furthermore, the potential utilization of TiO2-incorporated cementitious composites as road accessories such as tunnels, road median separators and soundproof walls in the form of tiles, blocks and structural components has been widely examined. In this regard, a thorough understanding on the material characteristics of TiO2-incorporated cementitious composites should be preceded. The present overview article, therefore, revisits previous studies of TiO2-incorporated cementitious composites and summarizes their various physicochemical properties and atmospheric pollutants removal performance.