• Title/Summary/Keyword: 장내 미생물

Search Result 394, Processing Time 0.03 seconds

건강식품과 장내미생물

  • 이완규
    • The Microorganisms and Industry
    • /
    • v.19 no.3
    • /
    • pp.33-37
    • /
    • 1993
  • 발효유를 포함한 건강식품은 체내로 섭취되어 소화관을 통과하는 과정 중에서, 결국 장관내에 정착, 서식하고 있는 다양한 장내세균총과 상호 영향을 받게 된다. 이와 같은 장내세균총은 현재 사람의 영양, 노화, 발암, 면역 기능, 장관감염 및 약물효과 등의 다방면에 걸쳐 생체에 영향을 미치고 있는 것으로 밝혀지고 있다. 따라서 건강식품이 생체에 미치는 생리학적 가치를 평가함에 있어서, 장내세균총의 영향을 간과할 수 없는 실정이다. 장내세균총에 관한 연구가 본격화 된지 약 30년의 세월이 지나, 계속 많은 새로운 사실이 밝혀지고 있지만, 아직도 해명되지 않은 많은 내용이 남아 있는 상태이다. 앞으로 이 방면에 더욱 많은 연구가 절실히 필요하다고 생각된다.

  • PDF

Recent Update in Fecal Microbiota Transplantation (Fecal Microbiota Transplantation의 최근 동향)

  • Kim, Haejin;Kang, Kyungmin;Kim, Sujin;Im, Eunok
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.265-274
    • /
    • 2014
  • Gut microbiota is a group of microorganisms that resides in the intestine and serves many important functions in human health. Using 16S ribosomal RNA sequencing analysis, a wide variety of bacteria in human gastrointestinal tract has been identified along with intriguing findings that there is a different bacterial composition among individuals. Fecal microbiota transplantation (FMT) is a procedure of stool transplantation from healthy donors to patients suffering from various diseases. Specifically, FMT is able to alter the composition of gut microbiota of recipients and therefore could be an effective treatment for the patients with gastrointestinal diseases including recurrent Clostridium difficile infection, inflammatory bowel disease, and irritable bowel syndrome. Here we review a list of human diseases related to gut microbiota disturbance and the case studies of FMT. We also summarize medicines and diagnostic tools that are under development. Therefore, gut microbiota can be a next generation's biotherapy for promotion of health and treatment of chronic diseases.

Differences in swine gut microbiota in southern region of Republic of Korea (한국 남부 지역별 돼지 장내 미생물생태 비교분석)

  • Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.81-85
    • /
    • 2015
  • Since the banning of antibiotic growth promoters (AGPs), the death of livestock has been increased, thus there is a strong demand for AGP-alternatives. Modulation of gut microbiota has been reported to affect host physiological functions and suggested to be a novel approach for developing AGP-alternatives. However, little has been understood about livestock gut microbiota compared to that of humans. We conducted preliminary study provide fundamental information regarding to regional differences in swine gut microbiota. Swine fecal samples were obtained from farms in Jeju (n=40), Gwangju (n=28), and Haenam (n=30). MiSeq was used to sequence 16S rRNA V4 region, and Mothur pipeline (Schloss et al., 2009) was used for data processing. A total of 5,642,125 reads were obtained and 3,868,143 reads were remained after removing erroneous reads. Analysis of taxonomic composition at the phylum level indicated greater abundance of Firmicutes among Jeju swine, and cluster analysis of distribution of operational taxonomic units also showed regional differences among swine gut microbiota. In addition, correlation analysis between non-metric multidimensional scaling and abundance of phyla suggested that the phyla Actinobacter, Verrucomicrobia, Firmicutes, and Fibrobacteres were driving factors for the regional differences. Livestock gut microbiota may be affected by diet and practices in farms. Our results indicated significant regional differences in swine gut microbiota, suggesting that future livestock gut microbiota studies should be designed with the regional differences in mind.

Fecal Microbiota Profiling of Holstein and Jersey, in South Korea : A Comparative Study (국내에서 사육되는 Holstein 젖소과 Jersey 젖소의 대변 미생물 분석 : 비교연구)

  • Gwangsu Ha;Ji-Won Seo;Hee Gun Yang;Se Won Park;Soo-Young Lee;Young Kyoung Park;RanHee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.565-573
    • /
    • 2023
  • In light of the complex interactions between the host animal and its resident gut microbiomes, studies of these microbial communities as a means to improve cattle production are important. This study was conducted to analyze the intestinal microorganisms of Holstein (HT) and Jersey (JS), raised in Korea and to clarify the differences in microbial structures according to cattle species through next-generation sequencing. The alpha-diversity analysis revealed that most species richness and diversity indices were significantly higher in JS than in HT whereas phylogenetic diversity, which is the sum of taxonomic distances, is not significant. Microbial composition analysis showed that the intestinal microbial community structure of the two groups differed. In the both groups, a significant correlation was observed among the distribution of several microbes at the family level. In particular, a highly significant correlation (p<0.0001) among a variety of microbial distributions was found in JS. Beta-diversity analyis was to performed to statistically verify whether a difference exists in the intestinal microbial community structure of the two groups. Principal coordinate analysis and unweighted pair group method with arithmetic mean (UPGMA) clustering analysis showed separation between the HT and JS clusters. Meanwhile, permutational multivariate analysis of variance (PERMANOVA) revealed that their microbial structures are significantly different (p<0.0001). LEfSe biomarker analysis was performed to discover the differenc microbial features between the two groups. We found that several microbes, such as Firmicutes, Bacilli, Moraxellaceae and Pseudomonadales account for most of the difference in intestinal microbial community structure between the two groups.

Fecal Microflora of Mice in Relation to Diet (식이에 따른 장내세균의 효소활성 및 장내세균층의 비교)

  • 최성숙;하남주
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.128-132
    • /
    • 1999
  • The effects of diet on the composition of fecal microflora in mouse and the aclivilies of several enzymes in the leces were investigated. Vegetarian dietary groups were found to contain about ten lines higher numbers of Locmbocillus and B$&bacterizml than animal dietary groups. An~rnal dietmy groups were found to contain about 5 tolo times higher numbers of anaerobic Closhidia and Bocieriocles than the vegeterian detary groups. Fccal microbial $\beta$-glucosidase, $\beta$-glucm'onidase, ii-yptophanase and orease activilies in ihe animal dietary groups were shown lo be 30 to 50% hgher than those in h e vegetarian detary groups.

  • PDF

Changes in gut microbiota with mushroom consumption (버섯 섭취와 장내 미생물 균총의 변화)

  • Kim, Eui-Jin;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.115-125
    • /
    • 2021
  • Mushroom consumption causes changes in the immune system and gut microbiota via the actions of mushroom probiotic components. β-Glucan structure-related substances suppress secretion of inflammatory mediators, and induce macrophage activation, enhancing immunity and immune function. Substances other than directly useful components can be metabolized into short-chain fatty acids by gut microbiota. These short-chain fatty acids can then induce immunity, alleviating various diseases. Substances used to stimulate growth of health-promoting gut bacteria, thereby changing the gut microbiota community are defined to be probiotics. Probiotic altered intestinal microflora can prevent various types of bacterial infection from external sources, and can help to maintain immune system balance, thus preventing diseases. Research into beneficial components of Pleurotus eryngii, Lentinula edodes, Pleurotus ostreatus, Flammulina velutipes, Auricularia auricula-judae, and Agaricus bisporus, which are frequently consumed in Korea, changes in microbiota, changes in short-chain fatty acids, and correlations between consumption and health contribute to our understanding of the effects of dietary mushrooms on disease prevention and mitigation.

In vitro investigation of food effects on human gut microbiota (In vitro 상에서 식품이 장내미생물에 미치는 영향)

  • Jeon, Dabin;Singh, Vineet;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • Recent gut microbiota studies have revealed the important roles of gut microbiota for our health. Increasing numbers of health functional foods have been developed every year. Development of functional food often includes ex- and in-vivo experiment to verify the beneficial effects of the functional food. To investigate effects of functional food on gut microbiota, animal models were often conducted. Beneficial effects of food can be evaluated based on how gut microbiota was shifted by food, which results in either increase in beneficial bacteria, decrease in potentially pathogenic bacteria or both. As animal experiments are generally time-consuming and laborious, we investigate how well in-vitro investigation of fecal microbiota may reflect dietary health benefits. Here, we tested 15 kinds of diets using two human subjects' fecal materials. Our results showed varying gut microbiota shifts according to diets, which suggested generally known beneficial diets (i.e. Kimchi, Chunggukjang) increased Lactobacillus and Bifidobacterium. Therefore, we suggest that in vitro fecal microbiota analysis could be used to evaluate beneficial effects of diets. Moreover, this method may be ideal to establish personalized diet.

옻나무 추출액의 급여가 육계의 생산성 및 장내미생물에 미치는 영향

  • 김상호;손장호;이상진;최철환;나재천;이덕수;류경선
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.109-110
    • /
    • 2004
  • 참옻나무 추출액이 육계의 생산성과 장내미생물 변화 및 영양소 소화율에 미치는 영향을 구명하고자 1일령 육계(Ross) 960수를 공시하여 평사에서 5주간 사양시험을 실시하였다. 증체량은 추출액 급여구가 첨가수준이 증가할수록 증가하는 양상을 보였으나 통계적 유의성은 인정되지 않았다. 사료섭취량 및 사료요구율 역시 차이가 없었다. 장내미생물 변화에서 맹장내 유산균, E. coli 및 Salmonella는 처리간 차이가 없었다. 영양소 소화율은 추출액 첨가구가 향상되는 결과를 보였으나 통계적 유의성은 인정되지 않았다.

  • PDF

Metagenomic Analysis of Antarctic Penguins Gut Microbial Dynamics by using Fecal DNA of Adélie (Pygoscelis adeliae) and Emperor (Aptenodytes forsteri) Penguins in Ross Sea, Antarctica (남극 로스해 지역의 아델리펭귄과 황제펭귄 분변 유전자를 활용한 남극 펭귄 장내 미생물의 메타지놈 분석)

  • Soyun Choi;Seung Jae Lee;Minjoo Cho;Eunkyung Choi;Jinmu Kim;Jeong-Hoon Kim;Hyun-Woo Kim;Hyun Park
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2023
  • This study applied a metagenomic analysis of the penguins' gut microbiome from fecal samples of Adélie Penguin (Pygoscelis adeliae) and Emperor Penguin (Aptenodytes forsteri) living along the Ross Sea, Antarctica. As a result of taxonomic analysis, 7 phyla and 18 families were mainly present in the gut microbiome of Adélie and Emperor penguins. To assess microbial diversity, we performed alpha diversity and OTU abundance analyses. It was confirmed that the Adélie Penguin's gut microbial species had a higher diversity than Emperor Penguin's. Based on the Beta diversity analysis using PCoA, differences were observed in the clustering between Adélie and Emperor penguins, respectively. Through the KEGG pathway analysis using PICRUSt, the nucleoside and nucleotide biosynthesis pathway was the most prevalent in Adélie and Emperor penguins. This study enabled a comparison and analysis of the composition and diversity of the gut microbiome in Adélie and Emperor Penguins. It could be utilized for future research related to penguin feeding habits and could serve as a foundation for analyzing the gut microbiomes of various other Antarctic organisms.

Effects of fermented coffee on human gut microbiota (발효커피가 사람장내미생물에 미치는 영향)

  • Ko, Gwangpyo;Kim, Jin-Kyeong;Jo, Seong-Wha;Jeong, Do-Youn;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.83-87
    • /
    • 2020
  • Fermented foods have been recognized as functional foods that provide health benefits, including the modulation of intestinal microbiota. Therefore, the aim of the present study was to examine the effects of coffee beans fermented with Lactobacillus plantarum and Bacillus amyloliquefaciens on healthy human gut microbiota. Fermentation increased the content of beneficial substances (i.e., flavonoids and polyphenols). The consumption of fermented coffee increased the occurrence of beneficial microorganisms such as fiber degraders and short-chain fatty acid producers, although no significant microbiota shifts were observed after the coffee consumption. The analysis of metabolic activities also showed no difference after the coffee consumption. Our study demonstrates that the consumption of the fermented coffee may increase some beneficial bacterial while remaining the gut microbiota and its activities.