본 논문에서는 두 가지 새로운 임펄스 잡음 검출기를 설계하고 총변량(total variation) 최적화를 통하여 영상에 존재하는 임펄스 잡음을 제거하는 방법을 제안한다. 설계된 임펄스 잡음 검출기는 적응 미디언 필터(AMF:Adaptive Median Filter)를 기반으로 하고 있으며 기존의 검출기에 비해 잡음검출의 정확도가 높고 영상의 디테일 정보를 잡음으로 오인하는 확률을 줄였다. 또한 제안하는 검출기는 잡음발생 확률에 무관하게 우수한 성능을 유지한다. 영상에서의 잡음제거는 제안된 검출기에 의해 얻어진 잡음후보 화소에 대해서만 총변량 최적화를 적용하므로 불필요한 계산을 줄이고 영상의 경계선을 잘 보존하면서 잡음을 제거할 수 있다. 실험결과 제안하는 2단 구조의 잡음제거 알고리즘은 다양한 형태의 잡음 밀도에 대해서 기존의 알고리즘에 비해 약 2dB 정도의 화질개선 효과를 얻었다.
본 논문에서는 TeakLite DSP 프로세서를 이용하여 캠코더에서 레코딩을 할 때 모터 소음과 주변 잡음이 입력되어 오디오 신호의 명료도가 떨어지는 문제점을 해결하기 위한 잡음 제거 기법의 실시간 구현에 대해서 기술하고자 한다. 잡음 제거를 위해서는 일반적으로 많이 사용되고 있는 Spectral Subtraction 기법을 사용하였다. 알고리즘 구현시 MIPS 감소에 효과적이었던 최적화 기법들을 적용하여 TeakLite DSP 프로세서에서 최적화되어 동작하도록 하였다. 최적화된 Spectral Subtraction 어셈블리 코드는 TeakLite DSP 프로세서에서 32 kHz, 16 bit 입력에 대해 40 MIPS에서 동작하였다.
본 논문에서는 무선 센서 네트워크에서 비 가우시안 채널 환경에서, 결정 융합 검출 규칙에 관한 연구를 수행하였다. 결정 융합에 대한 잡음 분포의 테일 특성이 갖는 영향을 고려하기 위하여 exponentially-tailed 분포를 사용하였다. 페이딩과 잡음 채널로 구성된 병렬 결정 융합 모델로부터 우도비율 기반 융합 규칙을 Neyman-Pearson 평가 하에서 최적화 규칙으로 고려하였으며, 이 최적화 규칙으로부터 높은 신호대 잡음비와 낮은 신호대 잡음비 근사를 통하여 몇 가지 준 최적화 규칙들을 구하였다. 또한 최소한의 사전 정보를 가지고 강인한 검파 성능을 제공하기 위하여 리미터 형태의 간략화 된 준 최적화 검출 규칙을 제안하였다. 모의실험을 통하여 결정 융합 규칙들의 성능을 비교 분석 하였으며 실험 결과들로부터 제안된 리미터 형태의 결정 융합 규칙의 강인성을 입증하였다.
복원 영상은 원 영상에 비해 항상 왜곡 및 잡음 요소가 첨가되는 경향이 있다. 영상 복원에서는, 변형 요소를 포함한 영상의 잡음, 또는 왜곡 정보를 교정하여 복원 영상의 품질을 향상시키고, 원 영상에 가장 근접한 값으로 표현하여야 한다. 영상 복원을 위한 공간 필터 중에서 선형 필터는 쉽게 구현될 수 있고, 가우시안 잡음 제거율이 높다는 장점이 있지만, 얼룩이나 임펄스 잡음 제거에 대해서는 좋지 않은 성능을 보이기 때문에, 이러한 단점을 보완할 수 있는 비선형 필터 알고리즘으로 본 논문에서는 적응성 다단계 최적화 필터(OAMF : optimal adaptive multistage filter)라는 영상 복원 공간 필터를 제안하였다. 적응성 다단계 최적화 필터는 영상 복원에서 필터링 시간 감소, 잡음 제거율 증가 그리고 외곽선 정보의 보존률 증가 등을 목적으로 역전파 학습 알고리즘의 가중치 학습법을 기반으로 적응성 다단계 필터(AMF)를 최적화 한 것이다. 본 논문에서 제시한 영상 복원 공간필터가 기존의 다른 필터들에 비해 임펄스 잡음 제거와 외곽선 정보 보존 기능, 가우시안 잡음 제거 능력 등이 향상됨을 시뮬레이션 결과로 입증하였다.
집적회로 시스템이 고집적화 됨에 따라 interconnection에서 인접한 두 신호선 에서 발생하는 cross-coupling capacitance에 의한 혼선잡음 때문에 logic fault나 delay fault가 일어날 수 있다. 현재 산업체에서 혼선잡음문제를 미리 발견하고 예방하는 방법이 없어서 모든 설계가 끝난 후 일일이 손으로 확인을 하고 사양을 만족하지 못하는 경우에는 설계수정을 하는 경우가 많았다 본 논문에서는 두 신호선간의 거리, 입력신호의 slew rate, 신호선의 두께, 신호선의 길이가 혼선잡음에 미치는 영향을 분석하고, 혼선잡음을 발생시키는 여러 요소에 대한 해결방안을 정리하여 제시하였고, noise에 대한 값을 table로 정형화하여 설계 최적화를 쉽게 수행할 수 있도록 하였다.
얼굴 인식은 생체인식 기술 중 비 강압식이라는 장점으로 인해 각광받고 있는 분야이다. 그러나 얼굴인식은 조명, 표정에 의해 인식 성능이 저하되는 단점이 있다. 그 중 얼굴표정에 많은 영향을 받으며, 잡음이 많은 부분이 입술부분이다. 입술모양의 변화에 따라 가보벡터 추출에 잡음이 포함되기 때문에, 얼굴 인식 성능이 저하되는 현상이 발생됨을 실험을 통해 알 수 있었다. 따라서 본 논문에서는 입술모양의 변화에 따른 잡음을 줄이기 위해 입술영역에 최적화된 말스버그 가보 웨이브렛 커널(Malsburg Gabor Wavelet Kerne)을 제안한다. 각 입술 특징점에 말스 버그 가보 웨이브렛을 적용하여, 추출된 가보벡터를 통계적으로 분석함으로써 잡음을 확인 할 수 있었으며, 잡음을 최소화하기 위해 입술 영역에 적응적인 말스버그 가보 웨이브렛 커널 을 제안하였다. 실험에 사용한 이미지는 1196 FERET Gellery 이미지를 사용하였으며, 얼굴 인식 성능이 향상됨을 알 수 있었다.
본 논문에서는, 웨이브렛 변환과 잡음 섞인 숫자 영상에 대한 최적화 인식 훈련기법을 사용한 다계층 신경망을 제안하고, 이 시스템을 아라비아숫자 인식에 적용한다. 웨이브렛 변환을 이용해 원 영상 정보의 중요한 부분은 최대한 보존하면서 입력벡터의 크기를 줄임으로써 신경망의 노드 수와 학습 수렴시간이 줄어들도록 하였고, 최적화 인식 훈련기법은 데이터의 잡음을 점차적으로 높여가면서 훈련벡터에 적용, 인식률의 변화에 대해 살펴보았다. 잡음이 섞인 숫자 영상의 인식율을 높이기 위해 원 영상에 0, 10, 20, 30, 40, 50㏈의 잡음을 섞은 영상을 훈련에 함께 사용하였다. 테스트 영상에 잡음이 30∼50㏈정도 섞였을 경우에는 원 영상만을 훈련에 이용했을 패와 잡음이 섞인 영상을 이용하여 훈련시켰을 경우에 인식율의 차이가 별로 없지만, 0∼20㏈정도 섞인 영상을 테스트에 사용할때에는 0, 10, 20, 30, 40 , 50㏈의 잡음이 있는 영상을 훈련에 사용했을 때가 원 영상만을 훈련에 이용했을 경우에 비해 인식율이 9% 향상된다.
기존의 윤곽선 검출윤곽선 검출방법과는 다른 본 논문에서는 효율적인 방법론을 이용해서 윤곽추출 및 잡음제거 방법론을 제안한다. 제안한 방법론은 전처리과정을 거친후 본 방법론을 적용함으로써 영상 윤곽추출률을 높이고자한다. 특히, 기존의 윤곽선 추출방법인 로버트와 라플라 시안방법을 사용한 후에 미디안 필터를 사용했으며, 제안한 방법은 기존의 윤곽선 추출 필터를 거친 후에 사용하였다. 구체적으로 서술하면 일정한 임계치를 초과하면 흰색으로 대치하고, 그렇치 않으면 검정색으로 대치한다. 기존의 잡음제거과정은 윤곽선 손실은 없었으나 잡음제거가 소량 이루어졌으며, 제안한 방법은 약간의 윤곽선 손실을 보였으나 완전하게 잡음을 제거시킬 수 있었다.
우울증은 감정을 조절하는 뇌의 기능의 변화가 생겨 부정적인 감정이 나타나는 병이다. 불안장애와 우울증은일반인구중 15%가 평생 동안 한번 이상 앓는 질환이다. 우울증환자는 일반인보다 불안한감정의 원인인 델타파가 많거나 좌측 전두엽의 알파파가 증가하고, 우측 전두엽은 베타파가 증가하는 특징을 가지고 있다. 선행연구에서는 백색잡음을 우울증환자의 증상완화에 사용하였다. 우울증 환자에게는 백색잡음보다는 유색(갈색)잡음이 치료에 더 효과적인 연구를 기반으로 하여 무음 상태, 갈색잡음, 고주파 가중치를 적용한 갈색잡음, 청감특성을 고려한 가중치를 적용한 갈색잡음을 들었을 때 의 뇌파에 대하여 살펴보았다. 그 중 갈색잡음과 청감특성을 고려한 가중치를 적용한 갈색잡음의 경우가 가장효과가 좋았다.
영상 잡음 제거 알고리즘은 잡음으로 오염된 영상으로부터 잡음이 제거된 깨끗한 영상을 추정하여 복원하는 연구이다. 기존의 모델 기반 방법의 영상 잡음 제거 알고리즘은 영상을 복원하는 과정에서 최적화 문제를 풀어야 한다는 단점과 매개변수를 직접 선택을 해주어야 한다는 단점을 가진다. 본 논문에서는 딥러닝을 이용한 학습기반 방법의 영상 잡음 제거 연구를 소개한다. 먼저, 신경망의 구축을 위하여 신경망의 구성 요소는 Instance Normalization 과 컨볼루션 신경망을 이용한 모델을 제안하였고, 여러 연구 분야에서 좋은 성능을 보이는 U-Net 구조를 전체적인 구조로 차용하였다. 신경망의 학습을 위하여 DnCNN 에서 제안한 잡음을 학습하는 잔여 학습 기법을 채택하였고, 기존의 영상 잡음 제거 알고리즘의 단점인 결과 영상이 흐릿해지는 현상을 보완하기 위하여 생성적 적대 신경망 학습 방법을 적용하였다. 본 논문에서 제안한 신경망을 이용한 잡음 제거 영상의 결과가 기존의 연구 방법들 보다 인지적인 측면에서 좋은 결과를 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.