• Title/Summary/Keyword: 잡음판단

Search Result 392, Processing Time 0.034 seconds

Image Quality Evaluation of CsI:Tl and Gd2O2S Detectors in the Indirect-Conversion DR System (간접변환방식 DR장비에서 CsI:Tl과 Gd2O2S의 검출기 화질 평가)

  • Kong, Changgi;Choi, Namgil;Jung, Myoyoung;Song, Jongnam;Kim, Wook;Han, Jaebok
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • The purpose of this study was to investigate the features of CsI:Tl and $Gd_2O_2S$ detectors with an indirect conversion method using phantom in the DR (digital radiography) system by obtaining images of thick chest phantom, medium thickness thigh phantom, and thin hand phantom and by analyzing the SNR and CNR. As a result of measuring the SNR and CNR according to the thickness change of the subject, the SNR and CNR were higher in CsI:Tl detector than in $Gd_2O_2S$ detector when the medium thickness thigh phantom and thin hand phantom were scanned. However, when the thick chest phantom was used, for the SNR at 80~125 kVp and the CNR at 80~110 kVp in the $Gd_2O_2S$ detector, the values were higher than those of CsI:Tl detector. The SNR and CNR both increased as the tube voltage increased. The SNR and CNR of CsI:Tl detector in the medium thickness thigh phantom increased at 40~50 kVp and decreased as the tube voltage increased. The SNR and CNR of $Gd_2O_2S$ detector increased at 40~60 kVp and decreased as the tube voltage increased. The SNR and CNR of CsI:Tl detctor in the thin hand phantom decreased at the low tube voltage and increased as the tube voltage increased, but they decreased again at 100~110 kVp, while the SNR and CNR of $Gd_2O_2S$ detector were found to decrease as the tube voltage increased. The MTF of CsI:Tl detector was 6.02~90.90% higher than that of $Gd_2O_2S$ detector at 0.5~3 lp/mm. The DQE of CsI:Tl detector was 66.67~233.33% higher than that of $Gd_2O_2S$ detector. In conclusion, although the values of CsI:Tl detector were higher than those of $Gd_2O_2S$ detector in the comparison of MTF and DQE, the cheaper $Gd_2O_2S$ detector had higher SNR and CNR than the expensive CsI:Tl detector at a certain tube voltage range in the thick check phantom. At chest X-ray, if the $Gd_2O_2S$ detector is used rather than the CsI:Tl detector, chest images with excellent quality can be obtained, which will be useful for examination. Moreover, price/performance should be considered when determining the detector type from the viewpoint of the user.

The usefulness of the contrast agent high in gadolinium for the magnetic resonance shoulder arthrography (자기공명 견관절조영검사 시 고함유량 가돌리늄 조영제의 유용성)

  • Na, Sa-Ra;Kim, Yoon-Shin;Choi, Kwan-Woo;Lee, Ho-Beom;Son, Soon-Yong;Min, Jung-Whan;Lee, Joo-Ah;Ma, Sang-Chull;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2199-2206
    • /
    • 2014
  • This research, used an contrast agent, which weighs about 1mmol/mL, of twice as much amount of gadolinum, per unit, for the test of magnetic-resonance shoulder arthrography. the reasearch which was carried out from January, of the year 2012 to August of the year 2013. consisted, of target of 41, patients including 20 ones, of whom an original, contrast agent of amount of 0.5mmol/mL, 21, ones of whom, a new, of amount of 1mmol/mL was used on, were the test target, in order to figure out the differences, according to the amount of gadolinum, according to the test results, the SNR of the contrast agent, of amount of 1mmol/mL, which is of high amount of gadolinum, was noticeably higher than the one of amount of 0.5mmol/mL(the percentage of joint space 38.01%, the supraspinous muscle 8.40%, head of humerus 12.78%). and CNR of the contrast agent, of amount of 1mmol/mL, which is of high amount of gadolinum, was higher than the one of amount of 0.5mmol/mL(the percentage of joint space and supraspinous muscle 48.96%, the one of joint space and head of humerus 42.00%). In conclusion, one of the methods of increasing the reducing effect of T1, is to use contrast agent of amount of 1mmol/mL, in order to increase the reducing effect of T1, acquire the visual of high testing quality.

The Evaluation of the Radiation Dose and Image Quality Through the Change of the Tube Voltage in Cerebral CT Angiography (전산화단층촬영장치를 이용한 뇌 혈관조영 검사에서 관전압 변화에 따른 방사선량과 영상의 질 평가)

  • LEE, Ji-Won;Jung, Kang-Kyo;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.38 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • To image diagnosis in neurovascular diseases using Multi-Detector Computed Tomography(MDCT), injected the same contrast material when inspecting Brain Computed Tomography Angiography(BCTA) to examine radiation dose and Image quality on changing Cerebral Artery CT number by tube voltage. Executed an examination with same condition[Beam Collimation $128{\times}0.6mm$, Pitch 0.6, Rotation Time 0.5s, Slice Thickness 5.0mm, Increment 5.0mm, Delay Time 3.0sec, Care Dose 4D(Demension ; D)] except for tube voltage on 50 call patients for BCTA and divided them into two groups (25 people for a group, group A: 80, group B: 120kVp). From all the acquired images, set a ROI(Region of Interest) on four spots such as left cerebral artery, right cerebral artery, posterior cerebral artery and cerebral parenchyma to compare quantitative evaluation, qualitative evaluation and effective dose after measuring CT number value from Picture Archiving Communications System(PACS). Evaluating images with CT number acquired from BCTA examination, images with 80 kVp was 18% higher in Signal to Noise Ratio and 19% in Contrast to Noise Ratio than those with 120 kVp. It was seen that expose dose was decreased by over 50% with tube voltage 80 kVp than with 120 kVp. Group A (25 patients) was examination with tube voltage 80kVp while group B with 120 kVp to examine radiation dose and Image quality. It is considered effective to inspect with lower tube voltage than with conventional high kVp, which can reduce radiation dose without any affect on diagnosis.

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar (지하투과레이더를 이용한 이상구간 평가 시 안테나 지향성의 영향)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Park, Young-Kon;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.21-34
    • /
    • 2017
  • The ground penetrating radar (GPR) signal can be measured with different amplitudes according to the directivity, so the directivity of the antenna should be considered. The objective of this study is to investigate the directivity of antenna by analyzing the reflection characteristics of electromagnetic waves radiated from the antenna, and to evaluate effective range of angle that can inspect an abnormal area according to the directivity of antenna. For the measurement of the directivity, a circular metal bar is used as reflector and the signals are measured by changing the angle and the distance between reflector and antenna in the E- and H-plane. The boundary distance between the near field and the far field is determined by analyzing the amplitudes of reflected signals, and two points with different distances from each of near and far fields are designated to analyze radiation patterns in near and far fields. As a result of radiation pattern measurement, in the near field, minor lobes are observed at angle section at more than $50^{\circ}$ in both E- and H-plane. Therefore, antenna has the directivity for the direction of main lobe and minor lobes in near field. In the far field, antenna has the directivity for a single direction of main lobe because minor lobes are not observed. The amplitude of the signal reflected from the near field is unstable, but it can be distinguished from noise. Therefore, in the near field, the ground anomaly can be detected with high reliability. On the other hand, the amplitude of the signal reflected from the far field is stable, but it is hard to distinguish between reflected signal and noise because of the excessive loss of electromagnetic wave. The analyses of directivity in the near and the far fields performed in this study may be effectively used to improve the reliability of the analyses of abnormal area.

A Study on the Development of Text Communication System based on AIS and ECDIS for Safe Navigation (항해안전을 위한 AIS와 ECDIS 기반의 문자통신시스템 개발에 관한 연구)

  • Ahn, Young-Joong;Kang, Suk-Young;Lee, Yun-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.403-408
    • /
    • 2015
  • A text-based communication system has been developed with a communication function on AIS and display and input function on ECDIS as a way to complement voice communication. It features no linguistic error and is not affected by VHF restrictions on use and noise. The text communication system is designed to use messages for clear intentions and further improves convenience of users by using various UI through software. It works without additional hardware installation and modification and can transmit a sentence by selecting only via Message Banner Interface without keyboard input and furthermore has a advantage to enhance processing speed through its own message coding and decoding. It is determined as the most useful alternative to reduce language limitations and recognition errors of the user and solve the problem of various voice communications on VHF. In addition, it will help to prevent collisions between ships with decrease in VHF use, accurate communication and request of cooperation based on text at heavy traffic areas.

The Effects of Reducing a Dose on the Genital Gland at a CT Scan on the Whole Abdomen According to the Shielding Material (Whole Abdomen CT촬영 시 차폐 재료에 따른 생식선 선량 감쇠 효과)

  • Gang, Eun Bo;Park, Cheol Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.419-425
    • /
    • 2016
  • The purpose of this study is to produce a shielding material to reduce a dose on the genital gland, one of the superficial organs, at a CT scan on the whole abdomen and hardly affect picture quality and examine its utility. This research made 22 mm silicone and 7.3 mm aluminum having the similar material quality and effect of previous bismuth. By using the non-shield, bismuth, 22 mm silicone, and 7.3 mm aluminum shielding materials, this author conducted a comparative experiment measuring the decay rate of the genital gland's exposure to radiation, change of the CT number and noise in the image, and the CT number, noise, and uniformity in the AAPM phantom. According to the results, exposure to radiation is reduced in bismuth as 29.96%, silicone 22 mm as 13.10%, and 7.3 mm aluminum as 18.27%. In bismuth, however, the image's CT number varies a lot, and uniformity is measured to be inappropriate in the AAPM phantom scan; therefore, it indicates great change in terms of picture quality in superficial organs like the genital gland. Concerning superficial organs like the genital gland, if 22 mm silicone and 7.3 mm aluminum are used as shielding materials, it will be helpful in reducing variation in picture quality and also decreasing radiation exposure to radiation.

Evaluating Spectral Preprocessing Methods for Visible and Near Infrared Reflectance Spectroscopy to Predict Soil Carbon and Nitrogen in Mountainous Areas (산지토양의 탄소와 질소 예측을 위한 가시 근적외선 분광반사특성 분석의 전처리 방법 비교)

  • Jeong, Gwanyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.509-523
    • /
    • 2016
  • The soil prediction can provide quantitative soil information for sustainable mountainous ecosystem management. Visible near infrared spectroscopy, one of soil prediction methods, has been applied to predict several soil properties with effective costs, rapid and nondesctructive analysis, and satisfactory accuracy. Spectral preprocessing is a essential procedure to correct noisy spectra for visible near infrared spectroscopy. However, there are no attempts to evaluate various spectral preprocessing methods. We tested 5 different pretreatments, namely continuum removal, Savitzky-Golay filter, discrete wavelet transform, 1st derivative, and 2nd derivative to predict soil carbon(C) and nitrogen(N). Partial least squares regression was used for the prediction method. The total of 153 soil samples was split into 122 samples for calibration and 31 samples for validation. In the all range, absorption was increased with increasing C contents. Specifically, the visible region (650nm and 700nm) showed high values of the correlation coefficient with soil C and N contents. For spectral preprocessing methods, continuum removal had the highest prediction accuracy(Root Mean Square Error) for C(9.53mg/g) and N(0.79mg/g). Therefore, continuum removal was selected as the best preprocessing method. Additionally, there were no distinct differences between Savitzky-Golay filter and discrete wavelet transform for visual assessment and the methods showed similar validation results. According to the results, we also recommended Savitzky-Golay filter that is a simple pre-treatment with continuum removal.

  • PDF

Efficient Algorithms for Motion Parameter Estimation in Object-Oriented Analysis-Synthesis Coding (객체지향 분석-함성 부호화를 위한 효율적 움직임 파라미터 추정 알고리듬)

  • Lee Chang Bum;Park Rae-Hong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.653-660
    • /
    • 2004
  • Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.

Container BIC-code region extraction and recognition method using multiple thresholding (다중 이진화를 이용한 컨테이너 BIC 부호 영역 추출 및 인식 방법)

  • Song, Jae-wook;Jung, Na-ra;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1462-1470
    • /
    • 2015
  • The container BIC-code is a transport protocol for convenience in international shipping and combined transport environment. It is an identification code of a marine transport container which displays a wide variety of information including country's code. Recently, transportation through aircrafts and ships continues to rise. Thus fast and accurate processes are required in the ports to manage transportation. Accordingly, in this paper, we propose a BIC-code region extraction and recognition method using multiple thresholds. In the code recognition, applying a fixed threshold is not reasonable due to a variety of illumination conditions caused by change of weather, lightening, camera position, color of the container and so on. Thus, the proposed method selects the best recognition result at the final stage after applying multiple thresholds to recognition. For each threshold, we performs binarization, labeling, BIC-code pattern decision (horizontal or vertical pattern) by morphological close operation, and character separation from the BIC-code. Then, each characters is recognized by template matching. Finally we measure recognition confidence scores for all the thresholds and choose the best one. Experimental results show that the proposed method yields accurate recognition for the container BIC-code with robustness to illumination change.