DOI QR코드

DOI QR Code

The Evaluation of the Radiation Dose and Image Quality Through the Change of the Tube Voltage in Cerebral CT Angiography

전산화단층촬영장치를 이용한 뇌 혈관조영 검사에서 관전압 변화에 따른 방사선량과 영상의 질 평가

  • LEE, Ji-Won (Radiological Science, Catholic University of Daegu) ;
  • Jung, Kang-Kyo (Radiological Science, Catholic University of Daegu) ;
  • Cho, Pyong-Kon (Radiological Science, Catholic University of Daegu)
  • 이지원 (대구가톨릭대학교 방사선학과) ;
  • 정강교 (대구가톨릭대학교 방사선학과) ;
  • 조평곤 (대구가톨릭대학교 방사선학과)
  • Received : 2015.04.29
  • Accepted : 2015.06.08
  • Published : 2015.06.30

Abstract

To image diagnosis in neurovascular diseases using Multi-Detector Computed Tomography(MDCT), injected the same contrast material when inspecting Brain Computed Tomography Angiography(BCTA) to examine radiation dose and Image quality on changing Cerebral Artery CT number by tube voltage. Executed an examination with same condition[Beam Collimation $128{\times}0.6mm$, Pitch 0.6, Rotation Time 0.5s, Slice Thickness 5.0mm, Increment 5.0mm, Delay Time 3.0sec, Care Dose 4D(Demension ; D)] except for tube voltage on 50 call patients for BCTA and divided them into two groups (25 people for a group, group A: 80, group B: 120kVp). From all the acquired images, set a ROI(Region of Interest) on four spots such as left cerebral artery, right cerebral artery, posterior cerebral artery and cerebral parenchyma to compare quantitative evaluation, qualitative evaluation and effective dose after measuring CT number value from Picture Archiving Communications System(PACS). Evaluating images with CT number acquired from BCTA examination, images with 80 kVp was 18% higher in Signal to Noise Ratio and 19% in Contrast to Noise Ratio than those with 120 kVp. It was seen that expose dose was decreased by over 50% with tube voltage 80 kVp than with 120 kVp. Group A (25 patients) was examination with tube voltage 80kVp while group B with 120 kVp to examine radiation dose and Image quality. It is considered effective to inspect with lower tube voltage than with conventional high kVp, which can reduce radiation dose without any affect on diagnosis.

다중검출기전산화단층촬영장치(Multi-Detector Computed Tomography; MDCT)를 이용한 뇌혈관 진단을 위해 뇌혈관전산화단층촬영검사(Brain Computed Tomography Angiography; BCTA)검사 시 동일한 조영제 주입 후 관전압 변화에 따라 변화되는 뇌동맥의 CT Number 값을 통해 방사선량과 영상의 질 변화를 알아보고자 하였다. BCTA검사를 받기 위해 내원한 환자 50명을 대상으로 각 25명씩 두 그룹으로 나누어 관전압(A그룹: 80kVp, B그룹: 120kVp)을 제외한 모든 조건을 동일한 조건[Beam Collimation $128{\times}0.6mm$, Pitch 0.6, Rotation Time 0.5s, Slice Thickness 5.0 mm, Increment 5.0 mm, Delay Time 3.0s, Care Dose 4D(Demension ; D)]으로 하여 검사를 실시하였다. 얻어진 모든 영상에서 좌 대뇌동맥, 우대뇌동맥, 후 대뇌동맥, 뇌 실질조직 등 네 부위에 관심영역(Region of Interest; ROI)을 설정하여 의료영상 저장 전송 시스템(Picture Archiving Communications System; PACS, G3, Infinitt, Korea)에서 CT Number 값을 측정하여 정량적 평가와 정성적 평가, 유효선량을 비교 하였다. BCTA검사에서 얻어진 각각의 영상에서 CT Number를 이용한 영상평가 결과 80kVp로 검사한 영상이 120kVp 검사에 비해 신호 대 잡음비(Signal to Noise Ratio; SNR) 18%, 대조도 대 잡음비(Contrast to Noise Ratio; CNR)가 19%이상 높게 나타났다. 그리고 피폭선량의 경우 관전압 80kVp에서 120kVp를 적용한 영상에 비해 50% 이상 감소됨을 확인할 수 있었다. A그룹(25명)은 관전압 80kVp로 촬영을 하였으며 B그룹(25명)은 관전압 120kVp로 검사를 하여 영상의 화질 및 선량을 비교 평가하였다. 기존의 고관전압과 비교하여 관전압을 낮게 설정하여 검사할 경우 진단에 영향 없이 방사선량을 감소시킬 수 있어 매우 유용하리라 판단된다.

Keywords

References

  1. Jae Ki LEE, et al.: Patient dose management in computed tomography (CT) scan. ICRP Jounal 87, 2000.
  2. Ministry of Food and Drug Safety: CT radiation dose the patient record management business conducted nationwide, 2014
  3. International Commission on Radiological Protection: The 2007 Recommendations of the International Commission on Radiological Protection. In ICRP Publication 103. Ahn. ICRP(2007)37(2/3), 2007
  4. Toshihide O, Kyo N, et al.: Cerebral Aneurysm Evaluation with Three-dimensional CT Angiography AJNR Am J Neuroradiol, 17, 447-454, 1996
  5. Y. K. Kim, S. K. Baek, M. J. Shin, et al.: Comparison beween CT Angiography and Conventional Angiography in the Diagnosis of Intracranial Aneurysms. The Korean Neurosurgical Society, 25, 10, 1996
  6. Napel S, Marks MP, Rubin GD, et al.: CT angiography with spiral CT and maximum intensity projection. Radiology, 185, 607-610, 1992 https://doi.org/10.1148/radiology.185.2.1410382
  7. EUR: European guidelines on quality criteria for computed tomography. EUR 16261, May, 1999
  8. Moon Chan Kim: Recent CT imaging technology, Theory and practice. Chung Gu Publisher, 540-558, 2007
  9. Y. G. Park, S. E. Jeong: Reduction of CT scan radiation exposure method. J Koran Med assoc, 1262-1268, 2001
  10. James D. Eastwood: Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. American Journal of Neuroradiology, 24, 1869-1875, 2003
  11. Dong Yoon HA: CT Recent knowledge, Medical Dose. Journal of the incheon radiological technologist association, 61-67, 2010
  12. Payne JT: CT radiation dose and image quality. Radiol Clin North Am, 43, 953-962, 2005 https://doi.org/10.1016/j.rcl.2005.07.002
  13. Kalra MK, Maher MM, Toth TL, et al.: Strategies for CT radiation dose optimization. Radiology, 230, 619-628, 2004 https://doi.org/10.1148/radiol.2303021726
  14. McCollough CH, Bruesewitz MR, Kofler JM Jr: CT dose reduction and dose management tools: overview of available options. Radiographics, 26, 503-512, 2006 https://doi.org/10.1148/rg.262055138
  15. Malte L Bahner, Andreas Bengel, et al.: Improved Vascular opacification in cerebral computed tomography angiography with 80 kVp. Radiology, 40(4), 229-34, 2005
  16. Ying Guo, Dapeng Shi, et al.: Clinical Value of Lower Extremity Arterial Imaging Using 80 kVp and Automatic Tube Current Modulation Technique Compared with Traditional 120kVp Scan, Conference: Radiological Society of North America 2013 Scientific Assembly and Annual Meeting, 2013.
  17. Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, Im JG: Radiation dose modulation techniques in the multidetector CT from basics to practice. Radiographics, 2008, 28, 1451-1459, 2008 https://doi.org/10.1148/rg.285075075
  18. Brenner, Hall EJ: Computed tomography, An increasing source of radiation exposure. N J Med 357, 2277-2284, 2007 https://doi.org/10.1056/NEJMra072149